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Introduction

The main part of my scientific interest and activity concentrates on gradients.

Gradients or generalized gradients in the sense of Stein and Weiss are first order
differential operators that are irreducible summands of the covariant derivative V. More
exactly, if one starts from any linear bundle E over M, a differential manifold, and
terminates together with V in the bundle T*M ® E and if, additionally, one has a Lie
group & acting both on E and T*M ® F (and such a group is always strictly associated to
the geometric structure considered on M), then one can think on splitting both the origin
bundle £ and the target bundle 7*M ® E onto direct sums of G-irreducible invariant
sub-bundles. The restriction of V to any one of such sub-bundles of £ composed with
the projection onto any one of E® T*M is just a &—gradient. We are mainly interested
in SO(n)-gradients, i.e., in the case & = SO(n) (sometimes also in the case & = GL(n)).
The exact definition is given in the next section.

Roughly speaking gradients are the simplest bricks the covariant derivative is build
of.

SO(n)-gradients were introduced in 1968 by E. Stein and G. Weiss in their famous
paper Generalization of the Cauchy-Riemann equations and representations of the ro-
tation group [50]. Their theory developed next into a large branch of global analysis,
geometry, differential operators or the representation theory. Many natural first order
linear differential operators in Riemannian geometry are either gradients or their com-
positions. For example, the exterior and interior derivatives d and d*, respectively, the
Cauchy-Riemann operator d are gradients while the classical Dirac operator on exterior
forms, namely, d+d* is their sum. The composition of the operator d+d* with its adjoint
leads to the Hodge Laplacian on skew symmetric (exterior) forms A = d*d + dd*.

Gradients depend on the geometry of M (the group &) and this is obvious, but, on
the other hand, they can themselves, e.g., by their spectral properties, determine, to
some extent the geometry (volume, area of the boundary, scalar curvature), The nice
algebraic properties of gradients make that their theory is still successfully developing.

Generally my scientific work with the gradients splits into two parts:

- Investigating of the Cauchy-Ahlfors operators - which is one of the gradients - in the
context of its applications in the theory of conformal and quasiconformal deformations
and transformations.

- Investigations of gradients - as the family of differential operators with interest-
ing analytic, algebraic and geometric properties - their ellipticity, their behavior at the
boundary, their geometry.



The two parts are disjoint when they are considered with respect the subject mat-
ter and they are overlapping when they are considered with respect the the date of
publication.

The first part terminates with publishing of my habilitation paper [45] in 1997. The
other starts in 1996 with publishing the papers [23] and [24].

The two of my papers [23] and [24] are not cited in the habilitation work [23]. Since
the subject of the two papers is inseparably connected to my ”after habilitation activity”
I will place them (in this report) to this part of activity.

In my scientific work I have cooperated with many mathematicians: Pawet Walczak,
Adam Bartoszek, Wojciech Koztowski, Matgorzta Ciska and Anna Kimaczynska (Uni-
versity of Lodz) , Bogdan Balcerzak and Jerzy Kalina (Technical University of Lodz),
Bent Orsted (Odense University and next Aarhus University, Danmark), Thomas. P.
Branson (Copenhagen University, Denmark and next The University of Iowa, USA),
Peter B. Gilkey (The Oregon University, USA) and Genkai Zhang (Odense University
and next University of Gothenburg, Sweden).

The report consist of three parts

1. The overview of selected papers
2. The overview of selected results
3. The scientific CV

In the first one, the short summaries of selected 21 papers are given.

In the second one, the selected results are given as theorems. There are 19 of them.
To make them more understandable, some theoretical material with necessary definitions
and facts is add. In this part my author and co-author theorems are distinguished with
the headline: Theorem (Lemma etc.) and the numeral from the references. The theorems
of other authors are only distinguished with italics.

After this two parts the list od references is placed.

In the third part my scientific CV is given.

The report closes the list of my publications.

1. The overview of selected papers

1.1. Selected papers before the habilitation and the habilitation paper
The papers: [40], [41], [42] and [43].

L. Ahlfors - in his papers papers [I] [2], [3] - studied the first order linear operator S
acting on a vector fields in R" as follows: SX is the matrix field which - for any vector
field X = [X1,..., X,,] - is the matrix field with
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The operator SX plays there an essential role in the theory of of quasiconformal de-
formations. The role comes from the fact that the norm of SX is a good measure of
quasiconformality:

If |SX| < k then X generates the one parameter family of quasiconformal transfor-
mations (V;)ier such that the constant of quasiconformality of W, is bounded by exp(3k?).
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I have noticed that S, when considered as a more general object, namely as an
operator on a Riemannian manifold M, dimM = n, with a Riemannian metric g and its
Levi-Civita covariant derivative V becomes the symmetric and trace free part of V and
that is has many nice geometric properties. In particular it is conformally covariant and
its kernel consists of conformal vector fields. Moreover, for a given deformation (=vector
field) X on M the norm of the tensor field SX appeared to be ”good measure” for the
constant of quasiconformality ¢(X)- an invariant known from the theory of quasicon-
formal deformations. I started a systematic study of S on a Riemannian manifold and
its relation to the theory of quasiconformal deformations and transformations. I have
noticed that S is an elliptic operator in the sense of injectivity of its symbol and that
it belongs to the class of so called Stein-Weiss operators, an important class of first
order differential operators related to the action of special orthogonal group SO(n). The
results of the investigations were published in my papers [40], [41]. The results from these
papers were used in investigations of the rank of quasiconformality for pseudo-conformal
deformations of real hypersurfaces in the complex space C**!. The results were published
in ”Mathematica Scndinavica” [42].

A further investigations of the operator S - called today the Ahifors or the Cauchy-Ahlfors
operator - the adjoint S* operator and the composition 5*S being a second order strictly
elliptic operator revealed several interesting geometric properties. An application of the
known Weitzenbock formula resulted in getting an important formula relating S*S' to
the Hodge-Laplacian A and the Ricci curvature on of M [43].

The paper [44].

The transfer of the Cauchy-Ahlfors operator S from R"™ and onto a Riemannian
manifold opened a new fields for its study. First of all the spectral properties can be
investigated. Indeed, in the compact case the strongly elliptic operator S*S has a discrete
spectrum. The results from [43] relating S*S to the Hodge Laplacian the Ricci curvature
enable now to determine the spectrum in many particular cases and getting important
estimations on the norm of S in the dependence on the curvature. Using the fact that
the norm of SX is the measure of the rank of quasiconformality for a deformation
X and using the spectral properties of the selfadjoint strongly elliptic operator 5*S' 1
established several estimations for the constant of quasiconformality for several classes
of deformations, I also obtained the lower bounds for constant of quasiconformality of
an arbitrary deformation on M in the dependence on the Ricci curvature. The results
were published in ”manuscripta mathmatica” [44].

The paper [33].

Together With B. Orsted we investigated the asymptotic expansion of the heat kernel
for the Ahlfors Laplacian S*S on a closed Riemannian manifold and obtained its asymp-
totic expansion. We also determined the spectrum in the case of the euclidean sphere
[33].

The papers [14], [15].

With T. P. Branson i P. B. Gilkey and next also with B. Orsted we determined several
initial coefficients of the asymptotic expansion of the heat kernel for second order linear

operators with the symbol of non-metric type and under different types of boundary
conditions [14] [15].



The paper [34].

With B. Orsted we investigated the boundary value problem for S*S for several
physically motivated boundary conditions on an arbitrary compact Riemannian manifold
with the boundary. We proved the ellipticity in the sense of Gilkey-Smith [19] of some
natural boundary conditions. The considered conditions were similar to the conditions
studied by H. Weyl in 1915 [51] where he studied the theory of the elastic body in
R3. For each of our boundary condition we obtained the asymptotic distribution of the
eigenvalues for S* what was a far generalization of the deep result by H. Weyl from 1915.

The habilitation paper [45].

My habilitation dissertation [45] is continuation of my paper from ”manuscripta
mathematica” [45]. Several results on relations between the constant of quasiconformal-
ity of a deformation and the geometry of manifold (curvature), in the case of a compact
Riemannian manifold with the boundary was derived there. In this case the constants
of quasiconformality depend not only on the Ricci curvature but also on the boundary
shape (the second fundamental form) and on the boundary conditions imposed on the
deformation.

1.2. Selected papers after the habilitation paper

The papers [23], [24].

Together with J. Kalina and P. Walczak we undertook the open problem of detection
and classification of the elliptic gradients. For such a gradient G the second order operator
G*G is strongly elliptic operator usually encoding some information on the geometry
of manifold. We succeeded by formulating and proving in the language of the Young
diagrams the rule of detecting the elliptic gradients and showing that there is only one
such gradient in each decomposition [23].

The result was essentially strengthen in an additional cooperation with B. Orsted
and G. Zhang [24]. The reformulation of the problem in the language of representations
gave it a new meaning and enabled the extension the result onto much larger class of
bundles and operators.

It is worth to add that the results obtained both in [23] and [24] not only assure
the existence and the uniqueness of the elliptic gradient in the decomposition (of the
covariant derivative into irreducible pieces) but also give simple rules for pointing it.

Inspired by our results, T. Branson gave a year later a full classification of the elliptic
gradients and its combinations in his paper [12].

These three papers completely solved the problem of ellipticity.
The unpublished manusctript.

Together with T. Branson we cooperated also on constructing possibly universal and
complete systems of elliptic boundary conditions for any elliptic gradient on a Rieman-
nian manifold with the boundary. In particular during may stay in the University of lowa
(as wisiting associate professor) in 2003/2004. The cooperation was continued also after
my leaving. A sudden and premature passing away of T. Branson in 2006 terminated the
cooperation. Some of our ideas on the elliptic boundary conditions were written in an
uncompleted manuscript. It contained in particular the construction of system od natu-
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ral boundary conditions but practically no theorems. Our hypothesis was: for any given
elliptic gradient all the conditions are elliptic. The construction is universal and works
well for any SO(n)—gradient not necessarily elliptic. Let us call this system of natural
boundary conditions by (SNBC). The key role in the construction is played by the Stokes
type integral formula from the paper [34] by B. Orsted and myself (see the formula ([21])
below). The method of construction was next described in the introduction to my joint
paper with W. Koztowski [30] in 2008 with a note on the Branson’s co-authorship. In
the paper the four natural boundary conditions from (SNBC) are investigated for the
weighted form Laplacian.

The paper [30].

The boundary value problem for the system of natural boundary conditions (SNBC)
was solved for the weighted Laplacian

Agpy = add +bdd  a,b>0

and the bundle of skew-symmetric tensors of any degree with polynomial coefficients
in the euclidean ball in R™ in a cooperation with W. Koztowski. There are four natural
conditions independently of the degree of form: Dirichlet, absolute, relative and Neumann
{D, A, R,N}. The study of the Dirichlet condition in this case was the subject of the
PhD thesis of the first author [29]. Here, the conditions {A, R, N} are investigated.
Excluding some exceptional cases the theorems on the existence and uniqueness of the
solutions are proved. In the exceptional cases necessary and sufficient conditions for the
the existence of solutions are formulated and the problem of uniqueness is discussed. The
most interesting is the forth boundary condition {N}. It is elliptic. It was not studied
before in the literature. For the existence of solutions some additional assumptions have
to be imposed in this case. The assumptions and the uniqueness of solutions is also
discussed in this case. All the proofs on the existence for all the investigated boundary
conditions are constructive. So, for a given boundary data, the solution can be derived
explicitly in each case.

The paper [27].

The system of natural boundary conditions for the operator
div grad

in the bundle of symmetric tensors (forms) of any degree on a Riemannian manifold
was investigated in a cooperation with A. Kimczynska. The operator was introduced
and investigated earlier in her PhD dissertation [26]. For the symmetric tensor of degree
k the system (SNBC) consist of 2**! boundary conditions. This is in contrast to the
skew-symmetric case, where independently of the degree there always four conditions.
Our paper contains the proof of the ellipticity of all the 25! conditions. In a contrast
to the until now known proofs of the ellipticity for other bundles where the proofs are
constructed to each the boundary condition separately we were able be to prove the
ellipticity of all the boundary conditions simultaneously.

The papers [6], [7], [8].

Lie algebroids seem to be a good environment (object) for investigating gradients.
Both algebroids and gradients have an analytic origin and both can be distinguished by
their algebraic properties. There is one more reason: the notion of Lie algebroid is very
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capacious and includes e.g.: Lie algebras, integrable distributions, in particular foliations,
cotangent bundles of Poisson manifolds and so on.

In the first papers of the series written together with B. Balcerzak, and J. Kalina, a
version of the Weitzenbdk formula - the fundamental tool for investigating the geometry
of differential operators is proved [6].

In the two other papers together with B. Balcerzak [7] and [§] detailed constructions
of all the possible gradients for the bundle of skew-symmetric forms and for symmetric
forms are given. The construction of the Dirac operator on the Lie algebroid is also given
explicitly. The basic algebraic and geometric properties of the constructed operators are
proved.

The papers [9], [10].

Differential operators, so in particular the gradients, restrict rather badly to sub-
manifolds and then to foliations. In our papers the difficulty was overcome by restricting
considerations to the class of so called SL(q) foliations. This class was introduced by Ph.
Tondeur in his book [49]. Roughly speaking a foliation of the class is given locally by
a submersion that is transversally volume preserving. Usually the authors make much
stronger assumption in a similar situation, namely they assume that the considered fo-
liation is Riemannian. In a rough language this means that the foliation is given locally
by a submersion that is transversally isometric. In a comparison to the last assumption
the our one is much, much weaker. Moreover, it looks like that it is as the weakest of
all possible ones. Notice that for any ¢ = 1,2... the codimension of SL(q) in GL(q) is
one! So, under this weak assumption on a foliation we get a satisfactory and coherent
theory of gradients without losing their most important geometric properties. The asser-
tions of our theorems on the existence and the shape of the formally adjoint operators
are not weaker than that of other authors working with similar operators under much
stronger assumption that the foliation is Riemannian. And this everything thanks to the
theorem on the existence of a special coordinate system for the SL(Q) foliation. The
existence of this special coordinate system on the SL(g)—foliations was proved together
with A. Bartoszek and J. Kalina [9]. Working in this system we were able to get many
geometrically important relations and facts. In particular the foliated Weitzenbock type
formula on SL(g)—foliated manifolds. In the other paper [I0] published a year later in
the Journal of Geometry and Physics the foliated gradients and the Dirac type operator
were successfully defined and investigated.

The paper [16].

A conformal map ® = (p,) : U — V between open subsets U, V' of Euclidean plane
R? can be characterized by the geometric conditions

(2) [Vl = |VY[? £0, < Vg, Vi >=0

where < -, - > denotes the standard inner product. Since a conformal map on a plane
is homomorphic or antiholomorphic, it follows that ¢ and 1 are harmonic. Functions
v and v satisfying are called conjugate. The level sets of such functions compose
a pair of mutually orthogonal families of curves. Their conformal moduli (being in fact
important conformal invariants) are then inverse each to the other, i.e. their product is
equal to 1. This express mathematically the content of the Dirichlet-Thomson principle
known from physics. By abstracting the above geometric meaning of the conformality,
we can formulate the idea in a very general situation. For a pair of real numbers p,q > 1
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we define and investigate pairs of (p, g)—conjugate submersions of a Riemannian mani-
fold. We prove that conjugate submersions of the plane are p— and ¢—harmonic maps,
respectively if and only if % + % = 1. With this assumption on p and ¢ we prove also that
in the case on an arbitrary Riemannian manifold, the product of moduli of foliations
defined by (p, ¢)—conjugate submersions is equal to 1. Moreover we prove that under a
weaker assumption that the foliations are defined by such submersions merely locally,
the product is less or equal to 1.

2. Overview of selected results

2.1. Gradients: the notion and examples

The main part of my scientific activity is placed in the theory of gradients. To review
may achievements in this range in a more strict form (theorems) I will introduce the
necessary theoretic material. Next I will formulate the three main problems of the theory.
Finally I will try to describe my attempts for solving them discussing each problem
separately.

Let M be a finite dimensional manifold of dimension n and let E be a vector bundle
over M.

Assume that V is a covariant derivative in F, i.e., assume & is a Lie group acting
both on T*M and E (such a group is always strictly associated to the geometric structure
considered on M).

The covariant derivative V is, by definition, a first order linear differential operator

(3) V:E—EQTM.

Our notation convention here is that a bundle itself and the spaces of sections of the
bundle is denoted by the same letter. For example, the symbols £ or £ ® T*M denote
the bundles themselves and the spaces of their sections: C*(E) or C*(E @ T*M),
respectively. Of course V above is the operator between the spaces of sections. We hope
that the proper understanding of the symbol will easily come from the context in each
case.

Split both the origin bundle E:

(4) E=Vio---0oV,e---aV,
and the target bundle F' = F ® T*M:
(5) FZWl@GBWV@.'@WS
into a direct sum of &—irreducible invariant subbundles of F and F', respectively. Notice
that and define uniquely analogous splittings for the spaces of sections.
The restriction of V to any one of such subbundles of F composed with the projection

onto any one of F'is just a &—gradient, shortly, gradient.
The described situation can be illustrated by the following diagram:
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So - for any pu, v - the first order differential operator
v =P, =m,0Voj,:V,— W,

is a B-gradient.

The arrows terminating at E (in the left part of the diagram) represent the natural
injections defined by the splitting . The arrows starting from F' (in the right part of
the diagram) - the natural projections defined by the splitting . To get a gradient
choose one of the injections, compose it with V and next with one of the projections.

In this paper we will mainly be interested in GL(n)- and SO(n)-gradients, i.e., in
the case ® = GL(n) or ® = SO(n). In the other case we assume that the manifold M
is oriented and equipped with a Riemannian structure represented by a scalar product
g=<-->.

2.2. Gradients in the tensor bundles

Consider now the particular case: the origin bundle FE is a tensor bundle over M. For
any k=0,1,2..., V can be treated as the operator

VTR T M) - T(® ™ T M).

By limiting considerations to this case we can derive many explicit formulas for
gradients for many irreducible subbundles of ®* T*M. In particular in the bundles of
skewsymmetric- or trace free symmetric tensors.

The fibers of TM are Euclidean spaces, SO(n) acts on them in a natural way. Obvi-
ously, the action can be extended naturally to @* T*M.

Decompose the space T*M* = ®F T*M into a direct sum of irreducible invariant
subspaces:

"M =D Vi

For every u, denote by j, : V,, — T*MP" the natural injection defined by the splitting.
Next, take any p and split the bundle V, ® T*M into a direct sum of invariant
irreducible subbundles
V,@T"M = @V W,.

For every v, denote by m, : V, ® T*M — V, the natural projection defined by the
splitting.



If the multiplicities are one — and it is almost always the case in our considerations
— this decomposition is unique.

A detailed information on decomposition into irreducibles of any representation (ac-
tion) of SO(n) in a tensor bundle may be found e.g. in [52].

For any u, v the first order differential operator

V¥ =P.m,oVoj,:V,— W,

is just a gradient.

Without loss of generality we can always confine considerations to the case when the
origin bundle is irreducible:

The splitting receives then a simpler form, namely:

(6) V=Gi+ - +G+ +G,

From now on we will always assume that the origin bundle is irreducible.

The simplest example is the case & = 1. The origin bundle A!' = T*M is irreducible
(SO(n) acts on the unit sphere in 7*M transitively) but the target bundle T*M @ A! =
T*M @ T*M splits into three SO(n)-irreducible invariant subbundles:

(7) T"M @ A = N* @S & S2.,

where
A? is the subbundle of skew-symmetric tensors,
Si is the subbundle of symmetric and trace-free tensors,
SZ is the subbundle of pure traces, i.e. tensors of the form cg, ¢ € R.
The three projections m,mo, w3 define the following three gradients

1 1
G1:7T1VZ§d, GQZFQVZS, ngﬁgV:——gd*,
n
SO
1 1
8 V=—-d+S5——gd
(8) sl +S——gd,
where d and d* are the operators of exterior derivative and coderivative, respectively.

2.3. The main problems of the theory of gradients

One of the interesting fact on SO(n)-gradients is that they can be characterized by
their conformal covariance.
The following fundamental fact was proved by Fegan [17].

FEach SO(n)—gradient G is conformally covariant, in the sense that there are constants
c and c* with

G = Qf(c#»l)QQc, G* = Qf(c*Jrl)Q*QC*,

whenever we have two conformally equivalent metrics, i.e. metrics g and g related by
g = Qg for some positive smooth function Q on M.

Conversely, any conformally invariant operator from an SO(n)—irreducible bundle is
a composition of a gradient and a bundle map.
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The Fegan’s theorem established a new perspective in the theory of gradients. It gave
a complex unified view on the whole family of gradients and brought a hope that other
interesting features can be selected and characterized.

Gradients are differential operators. Some of them are elliptic in the sense of injec-
tivity of their symbol. Some of them are not. Can the ellipticity be the property that
can be recognized and detected? Can the ellipticity be saved at the boundary if OM is
nonempty? What boundary conditions should be imposed then?

If we start with a covariant derivative from an irreducible bundle (which, by the way,
is an elliptic operator) then the splitting @ is composed in general of both elliptic and
not elliptic summands (gradients).

A natural question is: which and how many of summands are elliptic. And further,
what sums or linear combinations are elliptic. Let us call this an the related questions
the problem of ellipticity.

For example, the operator S from the decomposition is elliptic. In fact, it is the
only elliptic gradient in the decomposition. The two other gradients d and § are not
elliptic. But (attention!) their sum d + 0 — the Dirac type operator — is.

Gradients depend on the geometry of M (the group &) and this geometry is very
often encoded in them. The kernels of gradients have usually explicit geometric properties
or interpretation. For example the kernel of the Cauchy-Ahlfors operator S consists of
conformal deformations. On the other hand the gradients, can for example, by their
spectral properties, determine — to some extent — the geometry (volume, area of the
boundary, scalar curvature, etc.). The nice analytic geometric and algebraic properties
of gradients made that their theory can also be successfully developed in other categories
of objects, e.g. on Lie algebroids.

Generally the three following problems of the theory of gradients may be distin-
guished:

- the problem of ellipticity

- the problem of constructing natural elliptic boundary conditions for the
elliptic gradients

- the problem of the geometry of gradients (the direct and the inverse prob-
lem)

All the three mentioned problems (domains) are, in my opinion, equally interesting
and the author and his colleagues and cooperators have their small contribution in solving
each of them. Our nearest aim is to review this contribution. But first of let us introduce
the necessary notions and some general facts of the theory.

2.4. The ellipticity

Elliptic operators has many nice analytic and geometric properties especially from
the point of view of existence or uniqueness of solutions to differential equations involving
such operators.

Now, similarly to [32], introduce the notions of symbol and of ellipticity.

Let E and F be two vector bundles over M and P : E — F be a linear differential
operator of order m.
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Let p € M and § € T;M. Let m, denote the ring of germs of smooth functions
vanishing at p. Let f € m, be a smooth function defining £, i.e. £ = df (p). Let e € E,
and and s be such a section of F that s(p) = e.

The symbol of P at p is the map o : E, X T} — I}, defined by

(9) o(e,§) = P(f™s)(p)-

One can prove that the definition is correct, i.e. the right hand side of @D is indepen-
dent of the choice of f and s. We will also write o(p, &) instead of o(e, &) to stress the
dependence on p and €.

A linear differential operator P is called elliptic at p if the map

E,> e o(ef) €F,

is injective for every £ € Ty, § # 0.
We say that P is elliptic if it is elliptic at every p.

Recall that V is an elliptic operator in the above sense.

Now the question arises which gradients in the splitting @ are elliptic.
Notice that if G, is elliptic then the second order differential operator

G,G,,

where GG, denotes the operator formally adjoint to GG, is strongly elliptic.
The problem of ellipticity was completely solved within the three following years:
1995, 1996 and 1997 in the three following papers: [23], [24] and [12].

The first answer to the question on the ellipticity of particular gradients was given
by J. Kalina, A. Pierzchalski, P. Walczak in [23]. The paper was sent for publication in
1995.

It was proved there that in the case of & = GL(n) and V starting from ®—irreducible
bundle there is exactly one elliptic gradient in the splitting @ To detect the elliptic
gradient we used the Young diagram method. Let us describe it shortly.

Let W be a vector space (over R or C) of dimension n. Fix k € N and take a sequence
of integers o = (ay, ..., ), a1 = -+ >, =2 1, a1 + -+ + o = k. Such an « is called
a Young scheme of length k. In some references a Young scheme is called a decomposition.
It can be represented by a figure consisting of r rows of squares and such that the number
of the squares in the j-th row is o;.

A Young scheme can be filled with numbers 1, ..., k distributed in any order. A scheme
filled with numbers is called a Young diagram. Without loss of generality, we can assume
that the numbers grow, both, in rows and in columns.

Take a Young diagram « and denote by H, and V, the subgroup of the symmetric
groups S, consisting of all permutations preserving rows and columns, respectively. The
diagram « determines the linear operator (called the Young symmetrizer) B, : W* —
Wk W* = @ W, being the projection of W* onto an invariant an invariant subspace of
W* for the standard representation of GL(n) in W*. This representation is irreducible
on W,. Moreover,

W = Pw.,.

Repeat the same construction to the space W+t = W* @ W to get an analogous
splitting into irreducible invariant subspaces:
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W = W,
p

The symbol of V is just "tensoring by a covector”. More exactly the action of the
symbol abstracts in this case as follows.
Take arbitrary v € W and consider a linear mapping ®,, : W* — W**! defined by

Qw1 @ Qug) =w ® - QU @w

Theorem 1. ([23]) For any v # 0 the mapping
Pgo ®w|Wa Wy — Wy

15 ingective if and only if B is the distinguished extension of c.

Recall that the Young diagram (3 of the length k + 1 is the distinguished extension of
a if is obtained from « by an extension by a single square. The extended diagram should
have k + 1 in the added square, while the ordering in the remaining part of the diagram
is the same as in a, i.e. if

s=r, fi=oa1+1 [By=ay...0,=as.

In other words, looking at the Young diagrams, the extension of o to (3 is distinguished
when the added square is situated at the end of the first row.

Notice that Theorem [T] applied to any irreducible tensor bundle give a direct rule for
determining the elliptic gradient. Notice also the striking simplicity of the rule. Let us
state that as the following

Corollary 2. ([23]) The operator (gradient) G,z = Pz o V|w, is elliptic if and only if
0 is the distinguished extension of .

Analogous results were also obtained in [23] for some SO(n)-gradients. In particu-
lar, for such gradients in the bundle of skew-symmetric tensors and in the bundle of
symmetric tensors.

A year later a more general fact was proved for the case of compact semisimple group
® by J. Kalina, A. Pierzchalski. B. Orsted, P. Walczak, G. Zhang in [24].

Let & be a compact semisimple Lie group and U and V' two irreducible finite-dimensional
unitary representations with highest weights p and v respectively. The tensor product
U ® V contains the unique invariant subspace W on which & acts by the irreducible
representation of highest weight u + v. The following observation was proved there.

Lemma 3. ([24]) Let P be the orthogonal projection on an &—irreducible invariant sub-
space of the tensor product U ® V. Then the implication:

(10) u@v#0, uelveV = Pu®uv)#0

holds if and only if P is the projection to W.

This observation leads directly to an ellipticity criterion for &—gradients.
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Theorem 4. ([24]) Let & C &¢ be a connected compact semi-simple group, U and V,
complex representations of & with the highest weights \ and p, respectively. Then if

is the irreducible decomposition of U @ V' and Wy is the Cartan component i.e. corre-
sponding to the highest weight \ + p, the projection Py from U ® V' onto Wy is the only
one among the P; that satisfies the ellipticity condition (@)

There is now an immediate conclusion from proven theorems about the ellipticity of
respective gradients.

Note, that similarly to the results of the paper [23], also here, from proven theorems
and [4] an existence of one and only one elliptic gradient in decomposition of covariant
derivative. These theorems namely indicate the gradient.

In the discussed paper there is one more theorem, that I would like to mention.
It gives the number of irreducible representations of unitary group U(n) in the tensor
product of k copies of C", i.e. in the space @*C". Let d(k) = d(k,n) be this number.

Theorem 5. ([24]) We have that, for k < n,
1
d(k) = k! x coefficient of t* in exp (t + §t2)

and
d(k) — number of elements o € Sy, such that o® = 1.

Moreover, we have the following recursion formula

d(k + 1) = kd(k — 1) + d(k).

Next, again a year later, the solution to the problem of ellipticity was completed by
T. Branson with the investigating also linear combinations of gradients.

In his beautiful paper [12] he proved among other that for G = SO(n) and the
corresponding splitting of type (@ the following fact.

There are sets By, ..., B, C {1,...,r}, each of cardinality 1 or 2, such that

> GG,

vEA

is elliptic if and only if B, C A for some u.
Furthermore, excluding some exceptional cases the sets B, partition {1,...,r}, i.e.
B, are pairwise disjoint and {1,...,r} is the sum of all B,.

In that way, the problem of ellipticity was solved completely.

A Lie algebroid over a manifold M is a vector bundle A over M with a homomorphism
of vector bundles g, : A — T'M called an anchor, and a real Lie algebra structure
(I'(A),[-,-]) such that [a, fo] = fla,b] + 04 (a) (f)-bfor all a,b € T'(A), f € C*(M).

Any smooth manifold M defines a Lie algebroid, where A = T'M with the identity
anchor and the natural Lie algebra of vector fields on M. Other examples of Lie algebroids
are: Lie algebras, integrable distributions, in particular foliations, cotangent bundles of
Poisson manifolds, Lie algebroids of principal bundles.
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Assume that A is an oriented bundle and that it is equipped with a Riemannian
metric g. The metric can be transmitted to A* and then to any tensor product of any
number of copies of A*. The extended metric will be denoted by the same letter g.
Assume that rank of A is n. Each fiber is then an Euclidean space of dimension n. The
group SO(n) acts then on A* and all the tensor bundles. In particular, on the bundles
of skew symmetric and symmetric tensors.

Two important cases: the skew-symmetric forms and the trace-free symmetric tensors
taken as the origin bundle are investigated in details. In both of them the covariant
derivative splits exactly into three pieces. One of our aim is getting a possibly full analogy
and harmony in description of this two quite antipodal cases.

Define the antisymmetric-trace operator as the usual metric trace with respect to the
first two arguments:

AT N AT — AT A
and the antisymmetric-cotrace operator
cotr® : /\k_1 A" — A" ® /\k A"

defined as the operator conjugate to k - tr* in the following sense cotr® = k - (tr*)* or
more exactly:

(12) (cotr® (n) ., &), = (n. k- tr &),

forn € AV A" € € A* @ AP A*
Define three linear mappings

et A \TAT— At N A

by
T =Alt, 75 =id-—n{—75, w5 = e cotr® o tr®.
where Alt is antisymmetrizer acting on any k + 1-tensor 1 by
1
(Alt V) (ay,...,ak41) = — signo ¥ (A1), - - - Ao(ki1) ) -
CEay PR O

and the three differential operators

Pr=ntoVi: NTA* — Ao N4, je{1,2,3)

J

Theorem 6. ([7]) 7%, 74, 7% are projections and A* @ \* A* splits onto the direct (in
fact, orthogonal) sum of SO (n)—invariant subspaces:

(13) A*®/\kA* =Imn7] & Im7§ & Im 75,

The covariant derivative V® acting in the bundle N\¥ A* splits onto three operators
(14) V¢=P'+ Py + Py

of form

(15)  PP=qd®, Py =V — 3d" + g cotr®od™, Pj = =15 cotr® od™.

where d* and d** are operators of exterior derivative and coderivative, respectively, in
the bundle of skew-symmetric forms.
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Remark 2.1. For k # 7 # k + 1 the orthogonal subspaces in the splitting are

irreducible. For n = 4k or n = 4(k + 1) the origin bundle A% A* splits AL A* & AL A*
where 4/— denotes the subbundles of AT A* being the eigenspaces of the Hodge star
operator, respectively.

Notice that Im7¢ = A", Elements of Im7¢ @ Im ¢ are trace-free tensors, i.e.
tr*n =0 for n € Im7{ & Im 7, so elements of Im 7§ may be called pure traces.

Remark 2.2. To get gradients in for the exceptional cases, compose P;* with the
projections onto AL A* and AL A* for n = 4k, or restrict the origin bundle to one of
NEAS NEA* forn=4(k+1).

Remark 2.3. Notice also that Py is the only elliptic operator of the three ones in the
sense of injectivity of its symbol.

Consider now the case of symmetric forms.
Define the operator symmetric derivative d* : SFA* — S*1A* as the symmetrization
of the covariant derivative V* acting on the bundle S*A* of symmetric tensors (forms)

(16) d*=(k+1)-(SymoV®*) on S*A*
where Sym is the symmetrizer acting on any k + 1-tensor ¢ by
(Sym ) (a a )—# > 19((1 a )
y 1.+ Uk+1) — (k?+1)!g€sk+l o(l)s -5 Wo(k+1) ) -

By the symmetric coderivative d®* we mean the restriction of the coderivative to the
space of symmetric tensors:

(17) A% = Vg g 1 SFA* — SF71A%,
Define two operators. The symmetric-trace
trf: A* @ SPA* — ShlAx

as the restriction of the metric trace with respect to the first two arguments to A* @Sk A*
and the symmetric-cotrace

cotr® : SF71A* — A* @ Sk A*

defined as the operator conjugate to k - tr® in the following sense cotr® = k - (tr°)* or
more exactly:

(18) {cotr® (n), C)y = (w, k- tr° (),

for n € SF1A* ( € A* ® SkA*.
Consider the subbundle SfA* of S¥A* consisting of the traceless tensors, i.e. such
tensors £ € S¥A* that cotr® € = 0. SFA* is then a SO(n)-irreducible subbundle of S¥A*.
Define the operator

Ty cotr’otr on A*® SISA*.

:n—i—k—l
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and the three linear mappings:
ms s, A* ®SEAY — A*®SkA*
by
) =Symo (id —my,), 7wy =id—n] — 75, 75 = T

and next, the tree differential operators

Py =m0V SEA™ — A*@SFA*,  je{1,2,3}.

Theorem 7. ([7]) 5,75, 75 are projections and A* @ SEA* splits onto the direct (in
fact, orthogonal) sum of SO (n)—invariant subspaces:

(19) A*@SEA* = Im 75 @ Im 7 @ Im 3.

The covarant derivative V*® acting in the bundle SEA* splits onto the three operators

(20) Vi=P'+ P+ P
of form
Pr= (04— g0 a”)
L | ntk—17 ’
Ps v* 1 ds 2 @ds* + 1 t sds*
_ _ _ —cotr
2 k+17  (a+k—1D(k+1)7 ntk—1 !
s -1 s S
PB—mCOtI' Od

Remark 2.4. For n > 5 the orthogonal subspaces in are irreducible, so, P}, Py,
P in are gradients. If n = 4, P; splits further on two SO (n)-gradients. For n = 3
the decomposition into irreducible parts is given by the Clebsch-Gordon formula.

Remark 2.5. Notice that in the case k£ = 1 the splittings of V* and V* coincide up to
the order of terms and then P} = Py, P; = P, P§ = Py.

Remark 2.6. Notice also that P} is a symmetric counterpart of the Cauchy-Ahlfors
operator described above. Finally notice that similarly as in the skew-symmetric case
P} is the only elliptic of the three considered gradients.

Now we are ready to pass to the second problem from our list.

2.5. System of natural boundary conditions

The method was suggested in 2004 by T.P. Branson and A. Pierzchalski and described
in the unpublished manuscript (Tom Branson passed away in 2006). The method was
next described in the W. Koztowski and A,Pierzchalski paper [30] or in a more detailed
version in A. Kimaczynska and A. Pierzchalski [27]. Consider the operators of form

GG

where G is a gradient but the method is sufficiently general and fully applicable to other
differential operators not necessarily being the gradients.

To describe our method we will need some integral formulas.

16



Recall that if V starts from an irreducible bundle and if we split our target bundle
onto irreducible orthogonal summands and we get orthogonal splitting

Va =Gia+ -+ Ga.

A fundamental for the further construction is the observation by B. Orsted an A.
Pierzchalski [34] that for each gradient G = G;, i = 1,...,s which will be in fact a (Stein
- Weiss) gradient we have the same universal integral formula for each gradient:

Theorem 8. ([34])
(G"Ga, f)=(a, G"GB) =

(21) _ /aM((a, i GB) — (i,Ga, B))Qom

where
L) = Ve
()= [ )
15 the global scalar product.

Now we are ready to introduce our systems of natural boundary conditions .

First of all, the constructed condition should assert the self-adjointness of G*G in the
subspace of sections satisfying this condition. Otherwards, the integral on the right hand
side of should vanish. Roughly speaking, the trick here is to complete conditions in
such a way that — from one side — they should be "not to weak” (in order "not to lose
the uniqueness”) and — from the other side — they should be "not to strong” (in order
"not to lose the existence”).

The next step is that at the boundary, the action of the special orthogonal group
SO(n) is replaced by the action of of its subgroup - in fact isomorphic to SO(n— 1) - and
consisting of transformations that keep the normal vector invariant. In a consequence,
our up to now irreducible bundle splits at the boundary under the action of SO(n — 1)
onto, say s, orthogonal, irreducible and invariant subbundles. Denote by py, ..., ps the
projections defined by the splitting.

Decompose both o and i, Ga by taking their compositions with the projections p;, ¢ =
1,...,s.

We get then that at the boundary:

a:p1a+...+psa

and, similarly
1, Ga = p1i,Ga+ - - - + psi, Ga

An analogous splittings are obtained for « replaced by /3.
As a result, we get the following decomposition for the scalar products that appear
in the integrand:

<Cl{, ZVG5> =
+ (pro, p1i,GB)
+ <p2a7p2i1/G6>
+ (psv, st GB) .
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The right hand side of the last equality can be written (symbolically) in a form of a
two column matrix
pa p1i,GB
Pacx pZZVGﬂ

P pi, G

A natural boundary condition will be obtained then by the demand that exactly one
term of each row of the matrix is equal to zero.

We get that way 2° natural boundary conditions, namely, by exhausting all the pos-
sibilities of prescribing the zero value to exactly one term in each row.

Look at the two peripheral cases of our construction:

0 =* 0 =x* * 0
0 =* * 0 * 0
0 = 0 =* * 0

The first matrix defines the condition: pja = 0, poa = 0, ..., psac = 0 on OM or,
equivalently, « = 0 on M. It simply coincides with the Dirichlet type condition.

The last matrix defines the condition pi, Ga = 0, p2i, Ga = 0, .. .,psi,Ga = 0 on OM
or, equivalently, i, Ga = 0 na M, It simply coincides with the Neumann type condition.

These two conditions together with the remained 2° — 2 ones compose the set of 2°
natural boundary conditions under which the operator G*G is self-adjoint with respect
to the global scalar product.

Example 2.7. Consider the simplest case of the usual gradient operator acting on func-
tions on M treating as sections of the trivial bundle M x R — T M. We have then

(22) grad : M xR —TM

where T'M is the tangent bundle. Since the bundles M x R and T'M are both irreducible

the operator (@ 1s a gradient in our sense. Its formal adjoint is the negative divergence
operator

(grad)* = —div

So the composition -div grad is the negative classical Laplacian A on functions. The
known Stokes formula says in this case that

| Afgu—[ Fag==] (fV.9=V.f g0y

Since the bundle M ® R is irreducible, we have a one row matrix

(e x].

So, s=1, and the the natural boundary conditions take the form:
[ 0 =* } or[ * 0 } )

f=0 on OM or V,f=0 on OM.

That way we get the well known: Dirichlet or Neumann boundary conditions, respectively.

or, explicitly,
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The presented simple example show the naturality of the construction of the system
of natural boundary conditions (SNBC).

The function f in the example can be treated as form of degree zero (skew-symmetric
and the symmetric at the same time).

For forms of higher degree the number od summands at the boundary depends on
the symmetry type.

Each skew-symmetric form of degree k = 1...n (i.e. greater than zero) decomposes
at the boundary onto two summands: its tangent and the normal parts. So s = 2 inde-
pendently on the degree k. There are 22 = 4 natural boundary conditions in the bundle
of skew-symmetric forms.

Each symmetric form of degree k = 1...n decomposes at the boundary onto k + 1
summands described below. So s = £+ 1 and - in contrast to the skew-symmetric case -
depends on the degree k There are there 2¥*! natural boundary conditions in the bundle
of symmetric forms of degree k.

In the general case the number of summands is determined by the branching rule
from the whole group SO(n) to its subgroup SO(n — 1) and my be found e.g. in [20].

Coming back to the general case we can say that our systems of just constructed
boundary conditions is in some intuitively natural and complete. Indeed, its naturality
comes from the fact that in its construction the representations of SO(n) - the group
naturally related to the Riemannian structure were used. The completeness comes from
the fact that the considered representations decomposes there completely, i.e. decomposes
onto the full list of its irreducible subrepresentations.

More interesting and important is yet the problem of the ellipticity (at the boundary)
of the each particular condition from (SNBC).

The boundary value problem for an arbitrary Riemannian manifold with boundary
for S*S was studied by B. Orsted and A. Pierzchalski in [34]. Three boundary conditions
analogous to the conditions studied by Weyl were investigated there. The asymptotic
distribution of the eigenvalues for the Ahlfors Laplacian S*S was derived there.

The system (SNBC) consists - in the case of the bundle of skew-symmetric forms
of degree k - of four natural boundary conditions. The first three coincide with the
conditions considered by Weyl. The forth one is new. It completes the list of the previous
three ones with a new surprising symmetry.

Let us describe shortly the situation. For arbitrary £ a skew-symmetric k—form splits
(at the boundary) into two summands: its tangent and the normal parts:

w:wT+wN.

In a consequence the bundle of skew-symmetric k—forms splits at the boundary (under
the action of SO(n)) onto a direct sum of two subbundles.
So s = 2 and there are four (= 2?) natural boundary conditions [30]:

Dirichlet boundary condition (D):
w'=0 and WV =0 on OM.
Absolute boundary condition (.A):

WwN'=0 and (dw) =0 on OM.
Relative boundary condition (R):
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(bw)'' =0 and w' =0 on OM.

Neumann boundary condition (N):

(6w)' =0 and (dw)¥ =0 on OM.

Notice the following surprising symmetry in the system {D, A, R, N} with respect
to the Hodge x—operator.

Theorem 9. ([30], [46]) Each of the boundary conditions D, N is star invariant in
the sense that a k—form ¢ satisfies a condition if and only if the n — k—form x¢ satisfies
the condition. The set of conditions {A, R} is the star invariant in the sense that a
k—form ¢ satisfies the condition if and only if the (n — k)—form *¢ satisfies the other
one condition.

The ellipticity of the conditions analogous to {D, A, R,} was proved by B. Orsted
and A. Pierzchalski in 1996 (before the natural system of boundary conditions was for-
mulated). The proof was published in [34] for the case of a general compact Riemannian
manifold with a smooth boundary. The proof of ellipticity constructed there for each of
three conditions separately can also be extended onto the fourth natural condition {N}.
In a consequence the updated version of Theorem 4.2 from [34] can now be formulate as
follows.

Theorem 10. ([34]) With respect to either of the four natural boundary conditions:
{D, A, R, N} the weighted Laplacian L = Ay is self-adjoint and elliptic. In particular, L

has a complete orthonormal system of eigenforms oy, as, ... for each boundary condition:
Loy, = Mgy, with oy of class C™ and satisfying the boundary condition in question. Here
the eigenvalues 0 < A\; < Ao < ... grow exponentially.

The obtained system of boundary conditions have been also successfully tested by
W. Koztowski and A. Pierzchalski in [30] and earlier for the Dirichlet condition by W.
Koztowski in his PhD paper [29]. They considered there weighted Laplacian acting on
skew skew-symmetric forms of any degree k in the euclidean ball in R”. The boundary
value problem for all the four boundary conditions {D, A, R, N} and the polynomial
boundary data was solved completely. Moreover a construction of the explicit solution
for each of the boundary condition was given.

Let us pass to the case of operators acting on the bundle of symmetric forms of arbi-
trary degree k. This case is more difficult than the previous one and so, by nature, much
less investigated in the literature. Recently, it has been changing. The symmetric forms
are studied more and more intensively and more and more papers has been appearing on
this subject. Let us only mention the recent paper [21] on Killing and conformal Killing
tensors, i.e. the symmetric tensors from the kernel of a SO(n)-gradient df where df is
the symmetric and trace free part of the symmetric derivative.

The first difference between the bundles of skew-symmetric and symmetric forms is
that the other is of infinite rank. The next, and in our case more essential difference
is that the bundle of symmetric tensors of degree k splits onto k + 1 summands at the
boundary, so s = k4 1, and — in contrast to the skew-symmetric case — the number of
summands in the splitting depends on the degree of forms. In a consequence there are

20



2F+1 natural boundary conditions for the bundle of symmetric tensors of degree k. For
big k this gives a huge number of conditions.

In the recent paper by A. Kimaczynska and A. Pierzchalski in [27], the following
results were stated:

Theorem 11. ([27]) All the 281 natural boundary conditions for the second order el-
liptic operator divgrad in the bundle of symmetric k—forms are elliptic

Let us remark that by applying our original method we were able to prove the el-
lipticity of all the boundary conditions simultaneously. This contrast to the until now
known proofs of the ellipticity for other bundles where methods of proofs are constructed
to each the boundary condition separately.

A consequence of the ellipticity of boundary conditions is the following fact:

Theorem 12. ([26]) For each of all considered 2*** boundary conditions there exists a

sequence (V,,), n = 1,... of smooth sections of the bundle of symmetric k - tensors on
M such that:

a) (9,) is a complete orthonormal system in L? of eigenvectors
div grad v, = AU,

b) the forms v, satisfy the boundary condition
c) The eigenvalues N\, are real and

lim A\, = —o0.
n—oo

Regarding the system of natural boundary condition (SNBC), in some specific cases
it is possible to go further and provide the necessary and sufficient conditions for the
existence and uniqueness of solutions, or even further, and give the construction of these
solutions in specific cases. Let us briefly discuss this part of the activity.

Let M be a n—dimensional Riemannian manifold with a non-empty boundary oM.
Let g be a Riemannian metric on M and let V be the Levi-Civita covariant derivative
of g (we extend g to the whole tensor bundle). In the case of skew-symmetric forms of
any degree £ = 1,...,n on the manifold M the only elliptic gradient - also denoted
by S - composed with its formal adjoint operator S* gives a strong elliptic operator of
the second order S*S. In the case of k£ = 1, this operator is called the Ahlfors-Laplace
operator or just the Ahlfors Laplacian.

Applying the Weitzenbock formula we get a very important formula.

n—1

1
(23) §'S = Sd*d + dd* — ric,

n

where ric is an operator of order zero. More precisely, ric is given by Ricci action on
1-forms: (rica); = ricla;. Two versions of this formula: for forms and for vector fields
can be found, e.g., in my work ([43] Theorem 2), but in fact the formula was known to
the geometers much earlier.

The importance of the formula comes from the fact that it combines all the three
gradients from the decomposition with the Ricci tensor representing the geometry of
M. The formula also allows to determine the spectrum of S*S in many special cases e.g.
for the Einstein manifolds, and also to estimate the constant of quasiconformality af ant
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any deformation on M in dependence on the Ricci tensor. The results of research in this
filed are included in my publication in manuscripta mathematica [44].

Another important advantage of the formula is that it shows that - with an exact-
ness to the zero order component (the last component in the decomposition ) the
Ahlfors-Laplacian S*S is a particular case case of the weighted form Laplacian, i.e., of
the operator of form

(24) Agy = add + bds,

where a, b are positive reals called weights.

Moreover, the weighted form Laplace operator is well defined on any skew-symmetric
form of arbitrary degree k > 0.

For k& = 1 and the bounded domain in R3 the behavior on boundary for such an
operator was investigated by H. Weyl at the beginning of the 20th century, in the special
case of weights: a = % and b = % Weyl studied the boundary problem in this case for
three physically natural boundary conditions. He also determined the distributions of

the eigenvalues of A2 for each of these conditions (cf. [51]).

For k£ =1 and the bounded domain in R™ and the weights a = % and b = "T’l, the
operator A1 »—1 was investigated by L.V. Ahlfors in a series of papers from the 1970s [1],
2], [3]. In particular, he solved the boundary value problem for the Dirichlet boundary
condition and the analogous operator in the hyperbolic sphere in R™. He brilliantly used
the property of conformal invariance of the considered operator and the fact that the
group of conformal transformations of the sphere acts transitively and that it is the group
of isometries with respect to the hyperbolic metric. Consequently, it was enough to then
determine the value of the solution in the center of the sphere using the Poisson type
formula and ”translate” it to any point using the appropriate isometry. The Dirichlet
boundary problem for the Euclidean ball in R™ was more difficult. The Ahlfors method
could not be used because the isometric group isometries of the Euclidean ball does
not act transitively. However, H. Riemann, in the work of [47], in analogy to the well
known procedure for the Dirichlet boundary problem for Laplace operator on functions,
applied the fact that every L2-function on the sphere may be decomposed into a series
of spherical harmonics. Riemann decomposed - using representation theory - the space
of vector fields (or, equivalently 1-forms) into appropriately selected SO(n)—invariant
subspace, and then he found a convenient base in each of them. These bases allowed him
to construct a solution.

For any k, the Euclidean sphere in R" and weighted Laplacian acting on the
bundle of skew-symmetric forms with polynomial coefficients, the boundary value prob-
lems were investigated jointly by W. Koztowski me ( [30]). All the boundary problems
from the list of the (SNBC) were investigated. The system contains four boundary con-
ditions in this case. The discussed above: Dirichlet, absolute, relative and Neumann one
{D, A, R,N'}. The first three boundary conditions appeared in differential geometry ear-
lier under these names, e.g, when studying the asymptotic expansion of the heat kernel of
the Laplace type operators (see, for example, [14] or [15]). The fourth boundary condition
is new and has been studied for the first time. The Dirichlet boundary condition {D}
was studied in the Ph.D. dissertation by W. Koztowski [29]. in this particular case and
the forms of any degree k, the theorem on the existence and uniqueness of solutions holds
without any exceptions. Excluding some exceptional cases it also holds for the pair of
relative and absolute conditions. In each of these exceptional cases, the necessary and
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sufficient conditions for the existence of solutions are given and the uniqueness of the
solutions is discussed. The most interesting is the fourth condition N. The existence of
solutions requires some additional assumptions on the boundary data. However, also in
this case necessary and sufficient conditions for the existence of solutions are given. The
proofs of the theorems on existence are constructive so the solutions are given explicitly
for each given boundary data.

Let us quote here some theorems from [30] concerning the conditions R and .A.
Remind that any form decomposes at the boundary - according to the formula ?? - for
its tangent and normal parts. The form is called tangent when its has no normal part
and is called normal when its has no tangent part. The unit ball in R” is denoted by B
and its boundary, i.e., the unit sphere, by . All the forms considered here are forms in
R™ with polynomial coefficients.

Theorem 13. ([30] Relative boundary condition) Let 0 < k < n. For any tangent
forms: w of degree k — 1 and n of degree k there exists a unique ¢ € A* such that
Agpp =0 in B with

(d*p)f=w ¢'=n onX.

Theorem 14. ([30]Absolute boundary condition) Let 0 < k < n. For any normal
forms w of degree k + 1 and n of degree k there exists a unique ¢ € A* such that
Ay =0 and

(do)N=w N =n onX.

In [30] the necessary and sufficient conditions for the existence of solutions are for-
mulated for each of the exceptional cases: k = n, when R is considered or k£ = 0 when A
is considered. Also, in each of the two cases the uniqueness of the solutions is discussed.

Note (cf.[30]) that investigation of the pair of conditions { AR} can be reduced to
the study of any one them thanks to the following property, which holds not only for the
case of the Euclidean sphere, but - in general - for any Riemannian manifold M with a
smooth boundary OM.

Theorem 15. ([30]) Let w and n be a continuous tangential (k — 1)—form and k—form,
respectively, defined on OM. A k—form 1) is a solution to the relative boundary condition
App =0 in M with (d*p)T = w and ©* = n on OM if and only if (n — k)—form =i is
a solution to the absolute boundary condition Ay = 0 in M with (dp)N = (—=1)* xw
and o~ = xn on OM.

The case of the fourth natural boundary condition, the Neumann one N seems to be
of particular interests.

Awp =0 na B oraz (d*¢)" =w, (dp)Y =7 na OM.

This boundary condition has not been discussed earlier and in [30] is investigated
for the first time. It is elliptic. However, for getting the existence of solutions, some
additional conditions have to be imposed on w and 7. These conditions are necessary
and sufficient and they are formulated in theorem 4.10 from [30]. It would be difficult
to state them explicitly here since they are rather technical and the formulation would
require some preparatory material to be introduced just for the need of only this one
particular theorem. The problem of uniqueness is also discussed there.

Finally, let us add, that the natural system of boundary conditions (SNBC) was
intensively studied for the ellipticity, jointly by T. Branson and me. This took place,
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in particular, during my stay (as wvisiting associate professor) at the University of Iowa
in the period of 2003/2004. The conjuncture that for any elliptic gradient the (SNBC)
consists of only elliptic boundary conditions seems to be very bold, but there are no
counter-examples and all the investigated special cases confirm the conjuncture. Our
nearly two-year effort to find a proof to the hypothesis did not bring results. The prema-
ture death of T. Branson in 2006 interrupted our collaboration. The proof of the general
case seems to be rather difficult. However, the results of the described above joint work
with B. Orsted, later with W. Koztowski and recently with A. Kimaczyniska confirm the
hypothesis in three important particular cases.

2.6. The geometry of gradients

In his paper on elasticity ([51]) H.Weyl used the boundary condition of vanishing
divergence and vanishing tangential part of the vector field on the boundary of a domain
in R3. In our paper [34] on the boundary behavior of the Ahlfors Laplacian S*S and
practically also its generalization: the weighted Laplacian A,, defined in , three
different, analogous to that of Weyl - boundary conditions under the names: D, N and
& are considered. One of them & is the exact version of the Weyl elasticity condition in
much more general situation: a manifold instead of domain in R3, differential forms of
any degree k instead of vector fields. Also the Weyl’s operator is a particular version with

2 1

a = 3 and b = 3 of our weighted Laplacian A,,. The condition € was later recognized

as the relative one SR from the list (SNBC) and under such the name it occurs in our
Theorem [10] above.

One of the consequence of this theorem and in particular of the existence of the com-
plete system: ay, s, ..., Lag = Agay, of smooth eigenforms «y, satisfying the condition
R is that we can consider the heat semigroup exp(—tL) which is a kernel operator with
a smooth kernel

(25) H(t,z,y) = Z “a(z) @ ar(y)

and next its trace

o0

(26) tr exp(—tL) = e M = /M H(t,x,2)Qy.

It follows from the general principle (see e.g. [18]) that has an asymptotic ex-
pansion

tr exp(— Z a;t"™™2, 1\, 0.

Theorem 16. ([34]) Let L be the self-adjoint extension of the Ahlfors Laplacian with
the boundary condition R on M. Then the small-time asymptotics of the heat kernel have
two first terms as follows:

tr exp(—tL) ~(4mt)2vol(M)[(n — 1)a™2 + b?)]

(27) i(‘m) C L ol(OM)[(n — 3)a~2F* 4 b))
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Next, by the Tauberian theorem, the asymptotic distribution of eigenvalues was de-
duced, generalizing and sharpening that way the main theorem in

Theorem 17. ([34]) Let N(\) denote the number of eigenvalues for L less then .
Then, for our boundary condition R, the first terms in the asymptotic expansion for
N(A) is

) n/2

(4m)
N~ po a1

—_wol(M) - [a™™? + (n — 1)b7/?] . A2

Ifn=3a=2%2i b 1, for the coefficient (47)~ /F( + 1) we get the exact value

obtained by Weyl: T—

I conducted, together with T. Branson, P. B. Gilkey and B. Orsted, investigation on
asymptotic expansions for Laplace type operators. The results have been published in
[14] and [I5]. In both papers, a second order operator of form

(28) P = ad"d+ bdd" — €p,

is investigated, where p is any zero order selfadjoint operator. The operator P is a direct
generalization of the Ahlfors Laplacian S*S and it is an elliptic and selfadjoint
operator. In the discussed papers we determined first four coefficients of the asymptotic
expansions of the heat kernel for this operator. In the first paper: for compact Rieman-
nian manifold without boundary. In the second: for Riemannian manifold with boundary
and for the two boundary conditions: relative R and absolute A. Coefficients of the
asymptotic expansion are fundamental tool for spectral theory of differential operators,
especially for manifold geometry. These coefficients play important role when investigat-
ing so called inverse problem of spectral geometry. In this subject, the question is to
reconstruct the geometry based on information encoded in the investigating operators:
in their spectra or in the asymptotic expansions of the heat kernels. The latter ones, in
case of manifolds with boundary, carry an information about the geometry of both the
manifold and the boundary. The method used in our papers is analogical to the method
used in the paper of T. Branson, P. B. Gilkey and S. Fulling [I3], but completely different
from the one used by B. Orsted and myself in [34]. Moreover, in contrary to our method,
the method used in [13] does not cover Dirichlet condition D.

Finally, we will present some results from gradient geometry on foliated manifolds.

Properties of Riemannian manifolds gradients and their role were inducing the ques-
tions on the importance of gradients to investigate other foliated manifolds geometric
structures. It occurred to us, that also in these cases, the application of gradients leads
to interesting results.

We noticed, that the foliation of the class SL(q) defined and investigated by Ph.
Tondeur [49] (however in a different context) is a good class from a gradient theory
point of view in a sense that it is conform with restriction operation. Moreover it is
quite voluminous (codimension of Lie group SL(q) in linear group GL(q) is one) and it is
the broadest foliation class on which coherent gradients theory can be exercised without
losing their basic geometric attributes. In earlier works of other authors in regards to
restriction of natural differential operators to foliations, standard assumption (see for
example [4] or [B] of A. Alvarez Lopez, Y. A. Kordyukov) was that the foliation in
question are Riemannian. This assumption - in comparison to ours - is very strong. But
yet our conclusions are very similar. As an example, let us take the derived by us the
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Weitzenbock formula for foliations, one of the most important theorem in differential
geometry relating two Laplacians the Hodge and the Bochner ones acting on forms of
any degree k and with values in any Riemannian vector bundle with metrics h. Upper
index F at operator symbol denotes that the operator is related to leaves of a foliation.

Theorem 18. ([9]) Assume that (M, g) is a Riemannian manifold, (E,h)-a Rieman-
nian bundle over M and F is an SL(q)—foliation. Then, for any o € A¥TF* @ E,

Ao = —trace” (Vf)za + 8% (o),

where

ST(o)(X1,..., X)) = zpjz(—nj (R” (0, X)) o) (e X, Xy X)

s=1j=1

oraz
R% (e, Xj) = —VIVE +VE VI + VT )

for Xy,..., Xy, € TF, and a local orthonormal frame (ey, ..., e,) of vectors tangent to
the leaves JF.

In a cooperation with A. Bartoszek and J. Kalina ([9]), we proved that on any
SL(g)—foliation there exists a special, local coordinate system that is convenient tool in
foliated manifold geometry. This coordinate system enabled to identify many interesting
properties of geometric gradients, in particular, it was very useful in the proof of the last
theorem.

A year later, in the paper [10], we investigated also gradients and the Dirac operator
on SL(g)—foliation. A key observation is, that operators conjugate to operators restricted
to foliations can be expressed by an integral over full manifold M, the and integrand
have the standard form. Moreover, the described above Theorem refO-P being the key
theorem when the boundary problems are investigated holds also here for the F-relative
gradients in an analogous version

Let £, and 5“ 5 be any irreducible subbundles of £ and é‘ , respectively, and V7 .

£y — & 5, the relative gradient.

Theorem 19. ([10]) For any s € €, and u € éﬁ.
/<Vf°‘55,u> = / <5, —Watrf;Vﬂﬁu>.
M M

Otherwards, the operator V7°%* formally adjoint (on M ) to the operator V7 B is of form

vrer = —r trl, V7 1.
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