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PLANE ALGEBROID BRANCHES

AFTER R. APÉRY

Arkadiusz Płoski (Kielce)

The aim of these notes is to present the approach to plane algebroid branches
proposed by Roger Apéry in his 1946 note [A] and subsequently developed by
Azevedo [Az] and Angermüller [An]. In what follows we use freely the notions and
theorems explained in [Pł].

The essence of Apéry method is as follows. Let us consider an algebroid branch
given by a good parametrization x = ϕ(t), y = ψ(t). Then the integers ord g(ϕ(t),
ψ(t)), where g = g(x, y) runs over formal power series not vanishing on the branch
form the semigroup G associated with the branch. To study the semigroup G Apéry
introduced the important notions presently called Apéry sequence and Apéry basis.
With these notions he was able to study the relationship between the semigroups
associated with the given branch and its strict quadratic transformation. Then he
proved the main result: G is a symmetric semigroup i.e. there is an integer A > 0
such that for any integers a, b: if a + b = A then exactly one element of the pair
a, b belongs to G. An important application of this property is the theorem: the
local ring of a plane algebroid branch is a Gorenstein ring (see [G]).

The following quotation from [A] shows that Apéry knew Gorenstein’s property
as early as in 1946:

“On peut poser A = 2P −1 (A est impair d’après ses propriétés) et
appeler P le genre de la branche de courbe. P est la quantité dont
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augumenterait le genre de la courbe en considérant les singularités
dues à la branche comme virtuellement inexistantes. Le nombre de
points absorbé par l’intersection de la branche avec une adjointe
est 2P . Le nombre de conditions imposées par la branche aux
adjointes est P .”

The proof of Gorenstein’s property presented in these notes is due to Azevedo [Az].

1. Numerical semigroups

A numerical semigroup G is a subset of N closed under addition, containing
0 and such that the set N \ G is finite. The minimal element c ∈ N such that
c + N ⊂ G is called the conductor of G. The number c − 1 is then the biggest
integer not belonging to G and it is called the Frobenius number of G.

Lemma 1.1. Let a, b > 0 be coprime integers. Then G = aN + bN is a numerical
semigroup whose conductor is c = (a− 1)(b− 1).

Proof. Let us start with the following claim:
(*) for any n ∈ Z there is a unique pair (p, q) ∈ Z2 such that n = pa+ qb and

0 ≤ q < a.
Uniqueness: if pa + qb = p′a + q′b with 0 ≤ q ≤ q′ < a then a divides (q′ − q)b
and consequently q′ − q since a, b are coprime. Therefore q′ − q = 0 and obviously
p′ − p = 0.

Existence: there exist integers P,Q such that n = Pa + Qb. For any l we have
Pa+Qb = (P − lb)a+ (Q+ la)b. Choose l ∈ Z such that 0 ≤ Q+ la < a and take
p = P − lb, q = Q+ la

Now, we can prove Lemma 1.1. Let n ≥ (a − 1)(b − 1) and let n = pa + qb with
p, q such that in (*). Then pa = n − qb ≥ (a − 1)(b − 1) − (a − 1)b = −a + 1
and p ≥ −1 + 1

a . Therefore p ≥ 0 and n ∈ G since q ≥ 0. Thus G is a numerical
semigroup and its conductor is less that or equal to (a− 1)(b− 1).

To prove the equality c = (a−1)(b−1) we have to check that (a−1)(b−1)−1 /∈ G.
Suppose to the contrary that (a− 1)(b− 1)− 1 = Ra+Sb with R,S ∈ N. Dividing
S by a with the rest Q < a, Q ≥ 0 we get Ra + Sb = Ra + (S1a + Q)b =
(R + S1b)a + Qb = Pa + Qb, where P = R + S1b ∈ N. On the other hand
(a− 1)(b− 1)− 1 = (−1)a+ (a− 1)b and by the uniqueness of the representation
(*) we get P = −1. A contradiction

A numerical semigroup G is symmetric if there exists an integer A ∈ N such that
for any a, b ∈ Z: if a + b = A then exactly one element of the pair a, b belongs to
G. Note that A /∈ G (0 +A = A and 0 ∈ G) and any integer n ≥ A+ 1 belongs to
G (n + (A − n) = A, A − n < 0 and A − n /∈ G). If c is the conductor of G then
c = A+ 1.

Lemma 1.2. Let G be a symmetric semigroup with the conductor c. Then for any
a ∈ Z: a ∈ G ⇔ c − 1 − a /∈ G. Moreover, c is an even number, #(N \ G) =
#(G ∩ [0, c− 1]) = c/2.
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Proof. We have a + ((c − 1) − a) = c − 1 and c − 1 = A. Therefore we have
that a ∈ G⇔ c− 1− a /∈ G. To check the second part of the lemma observe that
the mapping

[0, c− 1] ∩G 3 z → [0, c− 1] ∩ (N \G)

is a bijection

Let G be a numerical semigroup and let n ∈ G \ (0). The Apéry sequence of G
with respect to n is, by definition, the sequence a0, . . . , an−1 ∈ G which satisfies
the following three properties:

1. 0 = a0 < a1 < · · · < an−1,
2. ai 6= aj (mod n) for i 6= j,
3. if a ∈ G and a ≥ ai.

It is easy to check that G and n define exactly one Apéry sequence (pick up in each
residue class od Z mod n the smallest element belonging to G, then write up these
elements in their natural order).

Let Ap(G,n) = (a0, a1, . . . , an−1). For any integer a ∈ Z there are unique i ∈
{0, . . . , n − 1} and l ∈ Z such that a = ai + ln. Obviously, we have a ∈ G if and
only if l ≥ 0. Note also that

G =

n−1⋃
i=0

(ai + nN) .

Lemma 1.3. Let c be the conductor of G. Then c = an−1 − n+ 1.

Proof. Observe that an−1−n = an−1+(−1)n /∈ G and if a /∈ G then a = ai+ln
with l < 0 which implies a = ai+ln ≤ an−1−n. Therefore an−1−n is the Frobenius
number of G and an−1 − n = c− 1

Lemma 1.4. Let Ap(G,n) = (a0, . . . , an−1). Then the following two conditions
are equivalent

(i) the semigroup G is symmetric,
(ii) ai + an−1−i = an−1 for i = 0, 1, . . . , n− 1.

Proof
(ii)⇒ (i). Let a, b ∈ Z be such that a+b = an−1−n. Suppose that a ∈ G. We have
a = ai + ln, where i ∈ {0, . . . , n− 1} and l ∈ N. Therefore b = an−1−ai− ln−n =
(an−1 − ai)− (l + 1)n = an−1−i − (l + 1)n. Since −(l + 1) < 0 we get b /∈ G.
(i)⇒ (ii). First we check that for any i ∈ {0, . . . , n−1} there exists a j ∈ {0, . . . , n−
1} such that ai+aj = an−1. Fix i ∈ {0, . . . , n−1} and let b = an−1−n−ai. Since
ai+b = an−1−n and G is symmetric we get b /∈ G and consequently b = aj+ln with
l < 0. We have ai+(aj+ln) = an−1−n, that is (ai−n)+(aj+(l+1)n) = an−1−n.
By symmetry of G we get aj + (l + 1)n ∈ G (ai − n /∈ G) which implies l + 1 ≥ 0.
Therefore l = −1 and b = aj − n. Consequently ai + (aj − n) = an−1 − n i.e.
ai + aj = an−1. By the above property for any i ∈ {0, . . . , n − 1} there exists a
j(i) ∈ {0, . . . , n − 1} such that ai + aj(i) = an−1. The sequence ai is increasing,
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therefore the sequence aj(i) is decreasing which implies that j(i) = n− 1− i for all
i ∈ {0, . . . , n− 1}

Example 1.5. If G = N a+N b, where gcd(a, b) = 1 then Ap(G, a) = (0, b, . . . , (a−
1)b) and G is symmetric.

2. The value semigroup of a plane algebroid branch

We recall here some basic notions from the local theory of plane algebroid curves.
For more details we refer the reader to [Pł]. In what follows K is an algebraically
closed field of arbitrary characteristic. Let K[[x, y]] be the ring of formal power
series in two variables x, y with coefficients in K. The plane algebroid branch is by
definition the principal prime ideal of K[[x, y]]. The branch (f)K[[x, y]] where f is
an irreducible power series will be denoted {f = 0}. For any branch {f = 0} there
exists a pair (ϕ(t), ψ(t)) of power series without constant term, in one variable t such
that f(ϕ(t), ψ(t)) = 0 in K[[t]] and K((ϕ(t), ψ(t))) = K((t)) (see [Pł], Section 2).
We call the pair (ϕ(t), ψ(t)) the normalization of the branch {f = 0}. For every
g = g(x, y) ∈ K[[x, y]] we define:

νf (g) = ord g(ϕ(t), ψ(t)) ∈ N ∪ {+∞} .
Let us recall the basic properties of νf (see [Pł], Section 3):

(i) νf (g) = 0 if and only if g(0) 6= 0,
νf (g) = +∞ if and only if f divides g.

(ii) νf (g + g′) ≥ inf{νf (g), νf (g′)} with equality if νf (g) 6= νf (g′).
(iii) νf (gg′) = νf (g) + νf (g′),
(iv) if νf (g) = νf (h) < +∞ then there exists a constant c ∈ K such that

νf (g − ch) > νf (g).
For any irreducible power series f ∈ K[[x, y]] we put

G(f) = {νf (g) : g runs over all power series such that g 6≡ 0 (mod f)} .
Clearly G(f) ⊂ N is a semigroup. We call G(f) the semigroup associated with the
branch {f = 0}. Two branches {f = 0} and {g = 0} are equisingular if and only
if G(f) = G(g). The branch {f = 0} is nonsingular (i.e. of multiplicity 1) if and
only if G(f) = N. We have min(G(f) \ {0}) = ord f .

Property 2.1. The semigroup G(f) is numerical.

Proof. Let (ϕ(t), ψ(t)) be the normalization of the branch {f = 0}. Then

we have K((t)) = K((ϕ(t), ψ(t)) and we can write t =
p(ϕ(t), ψ(t))

q(ϕ(t), ψ(t))
for some

p(x, y), q(x, y) ∈ K[[x, y]], q 6≡ 0 (mod f). Taking orders give 1 = νf (p) − νf (q).
Put a = νf (p) and b = νf (q). Then a, b ∈ G(f) are coprime and G(f) is numerical
by Lemma 1.1

Example 2.2. Let f = xa + yb +
∑
cαβx

αyβ , where α
a + β

b > 1, gcd(a, b) = 1.
Then f is irreducible and G(f) = N a+ N b.

In what follows we write Ap(f, n) instead of Ap(G(f), n).
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3. Apéry bases

Let us begin with some notations. If R is a commutative ring with 1 6= 0, we
shall denote by R[y]mon the semigroup of monic polynomials with coefficients in R,
in one variable y. For any integer k > 0 we let R[y](k) := {h ∈ R[y] : degy R < k}
(by convention degy 0 = −∞). If h0 = 1, h1, . . . , hk−1 ∈ R[y]mon, degy hi = i for
i = 0, 1, . . . , k − 1 then R[y](k) =

∑k−1
i=0 Rhi(y).

Let f ∈ K[[x, y]] be an irreducible power series. Assume that n := νf (x) < +∞
and let Ap(f, n) = (a0, a1, . . . , an).

Theorem 3.1. There exists a sequence of polynomials h0, . . . , hk−1 ∈ K[[x]][y]mon
such that degy hk = k and νf (hk) = ak for k = 0, 1, . . . , n− 1.

We call the sequence of polynomials such as in the theorem above an Apéry
basis of K[[x, y]]/(f) with respect to x. Note that

K[[x, y]]
/

(f) ∼=
n−1∑
i=0

K[[x]]hi .

The proof of Theorem 3.1 is based on two lemmas.

Lemma 3.2. Let k ∈ {1, . . . , n − 1} and suppose that there exists a sequence
h0, . . . , hk−1 ∈ K[[x]][y]mon such that degy hi = i and νf (hi) = ai for i = 0, 1, . . . , k−
1. Then

{νf (g) : g ∈ K[[x]][y](k) \ {0}} =

k−1⋃
i=0

(ai + Nn) .

Proof of Lemma 3.2
If a ∈

⋃n−1
i=0 (ai + Nn) then a = ai + l n for an i ∈ {0, . . . , k − 1} and l ≥ 0. Let

g = xlhi. Then degy g = degy hi = i ≤ k − 1 and νf (g) = l n + ai = a that
is a ∈ {νf (g) : g ∈ K[[x]][y](k) \ {0}}. Fix a polynomial g ∈ K[[x]][y] such that
g /∈ 0 and degy g ≤ k − 1. Then we can write g = Ak−1hk−1 + · · · + A0h0 where
Ai ∈ K[[x]] for i = 0, 1, . . . , k − 1. Let I = {i ∈ [0, k − 1] : Ai 6= 0}. For any i ∈ I
we have νf (Aihi) = (ordAi)n + ai. Therefore νf (Aihi) 6= νf (Ajhj) for i 6= j and
we get νf (g) = inf{νf (Aihi)} = νf (Ai0hi0) ∈ ai0 +nN for an i0 ∈ I. Consequently
we obtain νf (g) ∈

⋃k−1
i=0 (ai + Nn)

Lemma 3.3. Under the assumptions of Lemma 3.2:
(a) if g ∈ K[[x]][y](k) then νf (g + yk) ≤ ak,
(b) if νf (yk + g) ∈

⋃k−1
i=0 (ai + Nn) for a polynomial g ∈ K[[x]][y](k) then there

exists a polynomial ḡ ∈ K[[x]][y](k) such that νj(yk + g) < νj(y
k + ḡ).

Proof of Lemma 3.3
(a) Let g ∈ K[[x]][y](k). Since ak ∈ G(f) there exists a polynomial h ∈ K[[x]](n−1)

such that νf (h) = ak. By the Euklidean division we get h = (yk + g)Q+R, where
degy R ≤ k − 1 (it follows from Lemma 3.2 that k ≤ degy h since ak /∈

⋃k−1
i=0 (ai +

Nn)). Clearly νf (h) 6= νf (R) and we get ak ≥ νf (h − R) = νf ((yk + g)Q) ≥
νf (yk + g) which proves (a).
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(b) If νf (yk + g) ∈
⋃k−1
i=0 (ai+Nn) then by Lemma 3.2 there exists a polynomial

g1 ∈ K[[x]][y](k−1) such that νf (yk + g) = νf (g1). Therefore there is a constant
c ∈ K such that νf (yk + g − cg1) > νf (g1) = νf (yk + g). It suffices to take
ḡ = g − cg1
Proof of Theorem 3.1
Let k ∈ {1, . . . , n} be the greatest integer such that there exists a sequence h0, . . . ,
hk−1 ∈ K[[x]]mon satisfying the conditions degy hi = i, νf (hi) = ai for i =
0, 1, . . . , k − 1. Such a sequence exists for k = 1 (take h0 ≡ 1). We claim that
k = n. Suppose to the contrary that k < n and consider the set of polynomials
yk + g, degy g ≤ k − 1. By Lemma 3.3 (a) we have νf (yk + g) ≤ ak so that the set
νf (yk + g) : g ∈ K[[x]][y](k) \ {0}} is finite. By Lemma 3.3 (b) there exists a poly-
nomial ḡ, degy ḡ ≤ k − 1 such that νf (yk + g) /∈

⋃n−1
i=0 (ai + Nn). Let hk = yk + ḡ.

Thus νf (hk) ≡ aj (modn) for j ≥ k and νf (hk) ≥ aj ≥ ak. From Lemma 3.3 (a)
we infer that νf (hk) = ak. Since degy hk = k we obtained a contradiction which
proves that k = n

Corollary 3.4. Let h0, . . . , hk−1 be an Apéry basis of K[[x, y]]/(f) with respect to
x. Then for any k ∈ {1, . . . , n}:

(a) {νf (g) : g ∈ K[[x]][y](k) \ {0}} =

k−1⋃
i=0

(ai + Nn).

(b) If g ∈ K[[x]][y](k) then νf (yk + g) ≤ ak. The equality νf (yk + g) = ak holds
if and only if νf (yk + g) /∈

⋃n−1
i=0 (ai + Nn).

Proof. Part (a) follows from Lemma 3.2, part (b) from Lemma 3.3 (a)

The following characterization of Apéry bases will be useful.

Theorem 3.5. Suppose that there exists a sequence h0, . . . , hk−1 ∈ K[[x]][y]mon
such that degy hk = k, νf (hk) 6≡ νf (hl) (modn) for k 6= l. Then Ap(f, n) =
(νf (h0), νf (h1), . . . , νf (hk−1)).

Proof. Let Ap(f, n) = (a0, a1, . . . , an−1) and let k ∈ {1, . . . , n} be the greatest
integer k such that νf (h0) = a0, . . . , νf (hk−1) = ak−1. We claim that k = n.
Suppose to the contrary that k < n and consider νf (hk). We have νf (hk) ≤ ak
by Lemma 3.3 (a). Moreover, νf (hk) 6≡ ai (modn) for i ≤ k − 1. Therefore
νf (hk) ≡ aj (modn) for an integer j ≥ k and νf (hk) ≥ aj ≥ ak. Thus we get
νf (hk) = ak which is a contradiction with the definition of k. Therefore we get
k = n

Remark 3.6. The Apéry sequence Ap(f, n) = (a0, . . . , an−1) is strongly increasing
i.e. ai + aj ≤ ai+j for i+ j ≤ n− 1. Indeed, ai = νf (yi + gi), degy gi ≤ i− 1 and
aj = νf (yj + gj), degy gj ≤ j − 1. Therefore ai + aj = νf ((yi + gi)(y

j + gj)) =

νf (yi+j + yigj + yjgi + gigj) ≤ ai+j by Corollary 3.4
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4. Quadratic transformations and multiplicity sequences

Let f ∈ K[[x, y]] be an irreducible power series. Then the branch {f = 0} has
exactly one tangent (see [Pł], Property 1.1). Let m = ord f be the multiplicity
of the branch {f = 0}. We define the strict quadratic transformation Q(f) of f
as follows: if the unique tangent to {f = 0} has the equation y − ax = 0 the
Q(f) = f1 where f1 ∈ K[[x1, y1]] is a series uniquely determined by the condition
f(x1, ax1 +x1y1) = xm1 f(x1, y1), if the unique tangent to {f = 0} has the equation
x = 0 then Q(f) = f1 where f(x1y1, y1) = xm1 f1(x1, y1) in K[[x1, y1]]. The strict
quadratic transformation Q(f) is an irreducible power series and ordQ(f) ≤ ord f
(see [Pł], Lemmas 1.3 and 1.4).

The following theorem is due to Apéry ([A]).

Theorem 4.1. Let {f = 0} be a branch of multiplicity m and let Ap(f,m) =
(a0, . . . , am−1) and Ap(Q(f),m) = (a′0, . . . , a

′
m−1). Then ak = a′k + km for k =

0, 1, . . . ,m− 1.

Proof. We may assume without loss of generality then the unique tangent to
the branch {f = 0} is the line y = 0. Then Q(f) = f1 where the power series
f1 ∈ K[[x1, y1]] is determined by the condition f(x1, x1y1) = xm1 f1(x1, y1). Let

h̃k = yk1 + ak,1(x1)yk−11 + · · ·+ ak,k(x1) ∈ K[[x1]][y1], for k = 0, 1, . . . ,m− 1

be an Apéry basis of the branch {f1 = 0} with respect to x1. Let

hk = yk + x ak,1(x)yk−1 + · · ·+ xkak,k(x) ∈ K[[x]][y], for k = 0, 1, . . . ,m− 1 .

Obviously, we have degy hk = k for k = 0, 1, . . . ,m−1. To compute νf (hk) consider
a good parametrization (ϕ(t), ψ(t)) of the branch f = 0. Then ordϕ(t) < ordψ(t)
and the pair (ϕ1(t), ψ1(t)) = (ϕ(t), ψ(t)/ϕ(t)) is a good parametrization of the
branch f1 = 0. Therefore νf (hk) = ordhk(ϕ(t), ψ(t)) = ordhk(ϕ1(t), ϕ1(t)ψ1(t)) =

ordϕ1(t)kh̃k(ϕ1(t), ψ1(t)) = km+ ord h̃k(ϕ1(t), ψ1(t)) = km+ νf1(h̃k) = km+ a′k
for k = 0, 1, . . . ,m−1. Thus νf (hk) 6≡ νf (hl) (modn) for k 6= l and by Theorem 3.5
we get (νf (h0), . . . , νf (hm−1)) = (a0, . . . , am−1) which proves that ak = km + a′k
for k = 0, . . . ,m− 1

Corollary 4.2. The strict quadratic transformations of equisingular branches are
equisingular.

Corollary 4.3. Let {f = 0} be a branch of multiplicity m = ord f . If c and c1 are
respectively the conductors of G(f) and G(Q(f)) then c = c1 +m(m− 1).

Proof. Use Theorem 4.1 and the formula for the conductor in terms of Apéry
sequence (see Lemma 1.3)

For any branch {f = 0} we define Qk(f) = Q(. . . Q(f)), where Q is repeated
k times. We put m0 = ord f and mk = ordQk(f) for k ≥ 1. The sequence
of positive integers (m0,m1, . . . ,mk, . . . ) is called the multiplicity sequence of the
branch {f = 0}.
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Theorem 4.4.
(4.4.1) The multiplicity sequence is decreasing, all but finite number of its terms

are equal to 1.
(4.4.2) Two branches are equisingular if and only if they have the same multiplicity

sequence.
(4.4.3) If c is the conductor of the semigroup of a branch with multiplicity sequence

(m0,m1, . . . ,mk, . . . ) then

c =
∑
k≥0

mk(mk − 1) .

Proof. The theorem easily follows from Corollaries 4.2 and 4.3.

Note that an arithmetical characterization of multiplicity sequences was given by
Flenner and Zaindenberg ([F-Z], Proposition 1.2).

Theorem 4.5. (Apéry). The semigroup of a plane branch is symmetric.

Proof. Using the characterization of symmetric semigroups (Lemma 1.4) in
terms of Apéry sequence we check using Theorem 4.1 that for any branch {f = 0}:
G(f) is symmetric if and only if G(Q(f)) is symmetric. If {f = 0} is nonsingular
then G(f) = N is obviously symmetric. Hence follows the theorem

5. The Gorenstein theorem

Let f ∈ K[[x, y]] be an irreducible power series. We put

Of = K[[x, y]]/(f) ,

Mf = the field of fractions of Of ,
Ôf = the normalization (=the integral closure) of Of inMf .

Let C be the conductor of Of i.e. the largest ideal in Of which remains an ideal
in Ôf . Our aim is to prove the following result due to Gorenstein.

Theorem 5.1. dimKÔf/C = 2dimKOf/C .

To deduce Theorem 5.1 from Apéry’s property of the semigroup associated with
a branch we need two lemmas. Let c be the conductor of the semigroup G(f).

Lemma 5.2. dimKÔf/C = c .

Proof. Let (ϕ(t), ψ(t)) be a good parametrization of the branch f = 0. Then
O = K[[ϕ(t), ψ(t)]], Ô = K[[t]], C = {d(t) ∈ K[[t]] : d(t)K[[t]] ⊂ K[[ϕ(t), ψ(t)]]}
and G(f) = {ord g(ϕ(t), ψ(t)) : g(ϕ(t), ψ(t)) 6= 0}. By [Pł] (Theorem 2.10) C
is a nonzero ideal of the ring K[[t]]. Therefore N = dimKK[[t]]/C < +∞ and
C = (tN )K[[t]]. By the definition of the conductor:

· tNK[[t]] ⊂ K[[ϕ(t), ψ(t)]]

and
·· tN−1K[[t]] 6⊂ K[[ϕ(t), ψ(t)]].
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From the above properties it follows that tN−1 /∈ K[[ϕ(t), ψ(t)]]. All power series
of order ≥ N lie in K[[ϕ(t), ψ(t)]] which implies that any integer ≥ N is in G(f).
Thus c ≤ N . To check that c = N suppose to the contrary that c < N . Then
c + 1 ≤ N and N − 1 ∈ G(f) i.e. N − 1 = ord g(ϕ(t), ψ(t)) for a power series
g(ϕ(t), ψ(t)) 6= 0. Multiplying g(ϕ(t), ψ(t)) by a constant we may assume that
g(ϕ(t), ψ(t)) = tN−1 + γ(t) where ord γ(t) ≥ N . Therefore tN−1 = g(ϕ(t), ψ(t))−
γ(t) ∈ K[[ϕ(t), ψ(t)]] since γ(t) ∈ K[[ϕ(t), ψ(t)]]. A contradiction

Lemma 5.3. dimKOf/C = #(G(f) ∩ [0, c− 1]).

Proof. By Lemma 5.2 we have C = {γ = γ(t) ∈ K[[ϕ(t), ψ(t)]] : ord γ(t) ≥ c}.
Let h = #(G(f) ∩ [0, c − 1]) and let ε1, . . . , εh ∈ K[[ϕ(t), ψ(t)]] be power series
such that {ord ε1, . . . , ord εh} = G(f) ∩ [0, c− 1]. First, observe that ε1, . . . , εh are
linearly independent mod C: if ai ∈ K are not all equal to zero then ord(

∑
aiεi) =

ord εi0 < c since ord εi 6= ord εj for i 6= j. Therefore
∑
aiεi /∈ C. To check that

ε1, . . . , εh generate Omod C consider a power series γ 6≡ 0 (mod C). Since γ /∈ C
we have ord γ < c and there is a unique k ∈ {1, . . . , h} such that ord γ = ord εk.
Let ak ∈ K be such that ord(γ − akεk) > ord γ. If ord(γ − akεk) ≥ c then
γ ≡ akεk (mod C), if not there is a l 6= k such that ord(γ − akεk) = ordεl and
consequently ord(γ − akεk − alεl) > ord(γ − akεk). Proceeding in this way we find
constants ak, al, . . . , ap ∈ K \ {0} such that ord(γ − akεk − alεl − · · · − apεp) > c.
Therefore we get γ = akεk + alεl + · · ·+ apεp (mod C) which ends the proof

Proof of Theorem 5.1
The semigroup G(f) is symmetric by Theorem 4.5. Therefore by Lemmas 1.2
#(G(f) ∩ [0, c− 1]) = c/2. Use Lemma 5.2 and 5.3

Let us note the following corollary to Theorem 5.1.

Theorem 5.4. Let δ = dimKÔf/Of (see [Hi]). Then c = 2δ.

Proof. C ⊂ Of ⊂ Ôf is a chain of vector spaces such that dimKÔf/C < +∞.
Therefore

dimKÔf/C = dimKOf/C + dimKÔf/Of .
Use Theorem 5.1

Remark 5.5. We define c(f) = dimKÔf/C and δ(f) = dimKOf/C for any reduced
curve {f = 0}. Let f = f1 . . . fr with irreducible, pairwise coprime fi ∈ K[[x, y]]
for i = 1, . . . , r. Then

c(f) =

r∑
i=1

c(fi) + 2
∑

1≤i<j≤r

i0(fi, fj) and

δ(f) =

r∑
i=1

δ(fi) +
∑

1≤i<j≤r

i0(fi, fj) .

Using Theorem 5.1 and the above formulas we check that c(f) = 2 δ(f) for any
reduced curve {f = 0}.
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NIEROZKŁADALNE PŁASKIE KRZYWE ALGEBROIDALNE
WEDŁUG R. APÉRY’EGO

Streszczenie. Celem tego opracowania jest przedstawienie metody Apéry’ego w
lokalnej teorii krzywych algebraicznych. Dowodzimy, że dwie lokalne krzywe al-
gebroidalne, nierozkładalne mają taką samą półgrupę dokładnie wtedy, gdy mają
taki sam ciąg krotności. Ponadto dowodzimy za Azevedo, że lokalny pierścień
nierozkładalnej krzywej płaskiej jest pierścieniem Gorensteina.
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