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NUMERICAL SEMIGROUPS

Arkadiusz Płoski (Kielce)

This paper is intended to give proofs of the results stated without proof
in [GB-P2015]. We do this in Sections 1 and 2 following the approach due to
Angermüller [An] (see also [GB-P2012]). In Section 3 we consider characteristic
sequences satisfying the Abhyankar-Moh inequality which appears when studying
the plane curves with one branch at infinity (see [A-M], [B-GB-P]).
In Section 4 we present some applications of numerical semigroups to plane curve

singularities. In all the paper we denote by N the set of non-negative integers. If
a0, . . . , am ∈ N then Na0 + · · ·+ Nam stands for the set of all integers of the form
q0a0 + · · · + qmam, where q0, . . . , qm ∈ N. If S ⊂ N, S 6= {0} then gcd(S) denotes
the greatest common divisor of all integers belonging to S.

1. Nice sequences

Let us begin with the following lemma.

Lemma 1.1. Let (v0, . . . , vh) be a sequence of positive integers. Set dk =
gcd(v0, . . . , vk) for k = 0, . . . , h and nk = dk−1/dk for k = 1, . . . , h. Then for
every a ∈ Zdh we have Bézout’s relation

a = a0v0 + a1v1 + · · ·+ ahvh

where a0, a1, . . . , ah ∈ Z and 0 ¬ ak < nk for k = 1, . . . , h. The sequence
(a0, . . . , ah) is unique.
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Proof. Existence. If h = 0 the lemma is obvious. Suppose that h > 0 and
that the lemma is true for h − 1. Since dh = gcd(dh−1, vh) we can write for every
a ∈ (dh)Z: a = a′dh−1 + a′′vh with a′, a′′ ∈ Z. For any integer l we have a = (a′ −
lvh)dh−1+(a′′+ ldh−1)vh. Thus we can take a′′ ­ 0. Dividing a′′ by nh = dh−1/dh
we get a′′ = nha′′′+ah with 0 ¬ ah < nh. Therefore a = a′dh−1+(nha′′′+ah)vh =
(a′+ vhdh a

′′′)dh−1+ahvh. By induction hypothesis we get (a′+ vhdh a
′′′)dh−1 = a0v0+

· · ·+ ah−1vh−1 with 0 ¬ ak < nk for 0 ¬ k ¬ h− 1 and we are done.
Uniqueness. Suppose that a0v0 + · · · + ahvh = a′0v0 + · · · + a′hvh with 0 ¬

ak, a
′
k < nk for k > 0. Let ah ¬ a′h. Then (a′h − ah)vh ≡ 0mod (v0, . . . , vh−1)Z and

(a′h − ah)vh ≡ 0 (mod dh−1) which implies (a′h − ah)
vh
dh
≡ 0 (modnh). Therefore

a′h − ah ≡ 0 (modnh) and a′h − ah = 0 since 0 ¬ a′h − ah < nh. Uniqueness follows
by induction
In what follows we assume that dh = gcd(v0, . . . , vh) = 1.

We set

c =
h∑
k=1

(nk − 1)vk − v0 + 1

and call c the virtual conductor of the sequence (v0, . . . , vh).

Property 1.2. Let c be the virtual conductor of the sequence (v0, . . . , vh). Then
c ­ 0 and c = 0 if and only if vk = dk for all k = 1, . . . , h such that nk > 1.

Proof. Obviously we have vk ­ dk for k = 1, . . . , h. Therefore we get

c =
h∑
k=1

(nk − 1)vk − v0 + 1 ­
h∑
k=1

(nk − 1)dk − d0 + 1 = 0 .

Clearly c = 0 if and only if vk = dk for all k such that nk > 1

Property 1.3. (Brauer) With the notation introduced above, if a is an integer,
a ­ c then a ∈ Nv0 + · · ·+ Nvh.

Proof. Let’s write Bézouts relation for the integer a: a = a0v0+a1v1+· · ·+ahvh
where 0 ¬ ak ¬ nk − 1 for k = 1, . . . , h. Then a0v0 = a −

∑h
k=1 akvk ­ c −∑h

k=1 akvk = −v0 + 1 +
∑h
k=1(nk − 1 − ak)vk ­ −v0 + 1. Consequently, we get

a0 ­ −v0+1v0
= −1 + 1

v0
> −1 which implies a0 ­ 0

Property 1.4. Suppose that lvk ∈ Nv0 + · · · + Nvk−1 for an integer l ­ 0. Then
l ≡ 0 (modnk).

Proof. If lvk ∈ Nv0 + · · · + Nvk−1 then lvk ≡ 0 (mod dk−1) and l( vkdk ) ≡
0 (modnk). Since vkdk and nk are coprime we get l ≡ 0 (modnk)

Definition 1.5. A sequence (v0, . . . , vh) is nice if nkvk ∈ Nv0 + · · · + Nvk−1 for
k = 1, . . . , h.

Note that n1v1 = ( v1d1 )v0 ∈ Nv0. Hence the sequence (v0, v1) is nice. The sequence
(6, 7, 8) is not nice but the sequence (6, 9, 7) is.
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Property 1.6. Let (v0, . . . , vh) be a nice sequence. Then for every k ∈ {1, . . . , h}:
vk /∈ Nv0 + · · ·+ Nvk−1 if and only if nk > 1.

Proof. If vk /∈ Nv0+ · · ·+Nvk−1 then nk > 1 by the definition of nice sequence.
If nk > 1 then vk /∈ Nv0 + · · ·+ Nvk−1 by Property 1.4

Proposition 1.7. Let (v0, . . . , vh) be a nice sequence, c the virtual conductor of
(v0, . . . , vh). Set G = Nv0 + · · ·+ Nvh. Then
(i) if a ∈ Nv0+· · ·+Nvk then a = a0v0+· · ·+akvk with 0 ¬ a0 and 0 ¬ ai < ni
for i = 1, . . . , k.

(ii) For every a, b ∈ Z: if a + b = c − 1 then exactly one element of the pair
(a, b) belongs to G.

(iii) The virtual conductor c equals the conductor of G i.e. all integers bigger
than or equal to c are in G and c− 1 /∈ G.

(iv) c is an even number and #(N \G) = c/2.
Proof. (i) If k = 0 the assertion is obvious. Suppose that k > 0 and that the

property is true for k−1. By assumption we have a = q0v0+ · · ·+ qkvk with qi ­ 0
for i = 0, . . . , k. By the Euclidean division of qk by nk we get qk = q′knk + ak with
0 ¬ ak < nk. Thus a = q0v0 + · · · + qk−1vk−1 + q′knkvk + akvk = a′ + akvk where
0 ¬ ak < nk and a′ ∈ Nv0 + · · ·+ Nvk−1 since nkvk ∈ Nv0 + · · ·+ Nvk−1. Use the
induction hypothesis.
(ii) Take two integers a, b ∈ Z such that a + b = c − 1. Let us write Bézout’s

relation a = a0v0+a1v1+ · · ·+ahvh where a0 ∈ Z and 0 ¬ ai < ni for i = 1, . . . , k.
Then by the definition of c we get b = c− 1− a = −v0 +

∑h
k=1(nk − 1)vk − a0v0 −∑h

k=1 akvk = −(a0 + 1)v0 +
∑h
k=1(nk − 1− ak)vk. This is a Bézout’s relation. To

finish the proof it suffices to remark that exactly one element of the pair (a0,−a0−1)
is greater than or equal to zero.
(iii) By Property 1.3 all integers ­ c are in G. Since (c − 1) + 0 = c − 1 and

0 ∈ G we have c− 1 /∈ G by (ii).
(iv) The mapping [0, c− 1]∩G 3 a 7→ c− 1− a ∈ [0, c− 1]∩ (N \G) is bijective.

Therefore we have 2 ·#([0, c− 1] ∩G) = c and (iv) follows
Proposition 1.8. Let (v0, . . . , vh) be a sequence of positive integers such that
nkvk ¬ vk+1 for k = 1, . . . , h− 1. Then (v0, . . . , vk) is a nice sequence.
Proof. Fix k ∈ {1, . . . , h − 1}. Since nkvk = dk−1 vkdk ≡ 0 (mod dk−1) by Lem-

ma 1.1 we can write Bézout’s identity

nkvk = a0v0 + a1v1 + · · ·+ ak−1vk−1
where a0 ∈ Z and 0 ¬ ai < ni for i = 1, . . . , k − 1. Therefore, we get a0v0 =
nkvk − a1v1 − · · · − ak−1vk−1 ­ nkvk − (n1 − 1)v1 − · · · − (nk−1 − 1)vk−1 =
nkvk−[(n1v1−v1)+· · ·+(nk−1vk−1−vk−1)] > nkvk−[(v2−v1)+· · ·+(vk−vk−1)] =
nkvk − vk + v1 > 0 which implies a0 > 0
Remark 1.9. In fact we have proved the following property, stronger than
“(v0, . . . , vh) is nice”: if nkvk = a0v0 + a1v1 + · · · + ak−1vk−1 is a Bézout’s re-
lation then a0 > 0.
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2. Semigroups of natural numbers

A subset G of N closed under addition and containing 0 is called a semigroup.
In what follows we assume G 6= {0}. A semigroup is numerical if gcd(G) = 1.

Lemma 2.1. Let G be a semigroup and let v0 ∈ G, v0 > 0. If G 6= Nv0 then there
exists a unique sequence v1, . . . , vh such that
(i) G 6= Nv0+· · ·+Nvk−1 and vk = min(G\(Nv0+· · ·+Nvk−1)) for k = 1, . . . , h
(ii) G = Nv0 + · · ·+ Nvh.

Proof. Observe that if v1, . . . , vk satisfy conditions (i) then vk 6= vl (mod v0) for
l < k. Indeed, from vk = vl (mod v0) we get vk = vl+ qv0 with q ∈ N which implies
vk ∈ Nv0 + · · · + Nvk−1 since l < k. Therefore the conditions (i) define a finite
sequence. It suffices to take as (v1, . . . , vh) the longest sequence with property (i)

We call the sequence (v0, v1, . . . , vh) the v0-minimal system of generators of G (if
G = Nv0 then the v0-minimal system of generators is (v0)). If v0 = min(G \ {0})
then we say that (v0, v1, . . . , vh) is the minimal sequence of generators of G. Clearly
gcdG = gcd(v0, v1, . . . , vh) = dh (dh = 1 if G is a numerical semigroup).

Lemma 2.2. Let (v0, . . . , vh) be a v0-minimal system of generators of the semi-
group G. Then
(i) v1 < · · · < vh,
(ii) min(G \ {0}) = min(v0, v1),
(iii) if v ∈ G and v < vk for a k > 0 then v ∈ Nv0 + · · ·+ Nvk−1,
(iv) each vk, k > 0 is an irreducible element of G, that is vk is not a sum of
two nonzero elements of the semigroup G.

Proof. (i) We have G \ (Nv0 + · · · + Nvk−2) ⊃ G \ (Nv0 + · · · + Nvk−1) for
k ­ 2. Since vk ∈ G \ (Nv0 + · · · + Nvk−1) by the definition of vk, we have vk ∈
G \ (Nv0 + · · ·+ Nvk−2) and vk ­ min(G \ (Nv0 + · · ·+ Nvk−2)) = vk−1 for k ­ 2.
Thus we get vk−1 < vk since vk−1 6= vk.
(ii) min(G \ {0}) = min(v0, v1, . . . , vh) = min(v0, v1) by (i).
(iii) If v ∈ G \ (Nv0 + · · · + Nvk−1) then v = q0v0 + · · · + qkvk + · · · + qhvh with
ql 6= 0 for an index l ­ k. Thus v ­ qlvl ­ vl ­ vk which proves (iii).
(iv) Suppose that vk = v′ + v′′ with nonzero v′, v′′ ∈ G. Therefore v′, v′′ < vk and
vk = v′ + v′′ ∈ Nv0 + · · ·+ Nvk−1 by (iii). This contradicts the definition of vk
Lemma 2.3. Let (v0, . . . , vh) be a sequence of positive integers such that v1 < · · · <
vh and vk /∈ Nv0 + · · ·+Nvk−1 for k = 1, . . . , h. Then (v0, . . . , vh) is a v0-minimal
system of generators of the semigroup G = Nv0 + · · ·+ Nvh.

Proof. We check like in the proof of Lemma 2.2 (iii) that vk = min(G \ (Nv0 +
· · ·+ Nvk−1)) for k = 1, . . . , h

Proposition 2.4. Let G be a numerical semigroup with v0-minimal system of
generators (v0, . . . , vh). Suppose that nkvk ¬ vk+1 for k = 1, . . . , k − 1. Then
(i) nk > 1 for k = 1, . . . , h,
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(ii) nkvk < vk+1 for k = 1, . . . , h− 1,
(iii) the minimal system of generators of G is (v0, v1, . . . , vh) if v0 < v1,
(v1, v0, . . . , vh) if v1 < v0 and v0 6≡ 0 (mod v1), (v1, . . . , vh) if v1 < v0
and v0 ≡ 0 (mod v1).

Proof. By Proposition 1.8 the sequence (v0, v1, . . . , vh) is nice. Since vk+1 /∈
Nv0 + · · · + Nvk we have nk > 1. Property (ii) is obvious. To check (iii) observe
that the inequality n1v1 < v2 implies v0 < v2 since n1v1 = v0( v1d1 ) and recall that
by Lemma 2.2 (ii) we have min(G \ {0}) = min(v0, v1)

3. Characteristic sequences

A sequence of positive integers (r0, . . . , rh) is said to be a characteristic sequence
if it satisfies the following two axioms:

1. Set dk = gcd(r0, . . . , rk) for 0 ¬ k ¬ h. Then dk > dk+1 for 0 ¬ k < h and
dh = 1.

2. Set nk = dk−1/dk for k = 1, . . . , h. Then nkrk < rk+1 for 1 ¬ k < h.
We call r0 the initial term of the characteristic sequence (r0, . . . , rh). Let G =
Nr0 + · · · + Nrh be the semigroup generated by a characteristic sequence. Then
(r0, . . . , rh) is a r0-minimal system of generators of G (cf. Lemma 2.3). In particular
G and r0 determine the sequence (r0, . . . , rh).

Proposition 3.1. Let G be the semigroup generated by a characteristic sequence
(r0, . . . , rh). Then the conductor c of G equals

c =
h∑
k=1

(nk − 1)rk − r0 + 1 .

The semigroup G is symmetric: if a, b ∈ Z and a + b = c − 1 then exactly one
element of the pair (a, b) belongs to G.

Proof. The proposition follows from Propositions 1.7 and 1.8.
A characteristic sequence (r0, . . . , rh) has the Abhyankar-Moh property (in short:

the AM property) if it satisfies the inequality

dh−1rh < r
2
0 .

For every such sequence we define the associated sequence (δ0, . . . , δh) by putting

δ0 = r0, δk =
r20
dk−1

− rk for 1 ¬ k ¬ h .

Lemma 3.2. The associated sequence (δ0, . . . , δh) satisfies the following properties

1) δk > 0 and gcd(δ0, . . . , δk) = dk for 0 ¬ k ¬ h,
2) nkδk > δk+1 for 1 ¬ k < h.
3) If γ is the virtual conductor of the sequence (δ0, . . . , δh) then γ = (r0 −
1)(r0 − 2)− c.
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Proof. We have δk =
r20 − dk−1rk
dk−1

­ r
2
0 − dh−1rh
dk−1

> 0. The second part of

property 1) follows by induction on k. Since gcd(dk−1, δk) = dk we get

gcd(δ0, . . . , δk) = gcd(gcd(δ0, . . . , δk−1), δk) = gcd(dk−1, δk) = dk .

To check 2) it suffices to observe that the inequalities nkδk > δk+1 and nkrk < rk+1
are equivalent. Recall that γ =

∑h
k=1(nk − 1)δk − δ0 + 1. Thus we get

γ=
h∑
k=1

(nk − 1)
(
r20
dk−1

− rk
)
− r0 + 1 =

h∑
k=1

(nk − 1)
r20
dk−1

− r0 + 1−
h∑
k=1

(nk − 1)rk

=(r0 − 1)2 −
h∑
k=1

(nk − 1)rk = (r0 − 1)(r0 − 2)− c

Proposition 3.3. Suppose that (r0, . . . , rh) is a characteristic sequence with the
AM property. Let c be the conductor of the semigroup Nr0 + · · · + Nrh. Then c ¬
(r0 − 1)(r0 − 2) with equality if and only if rk = r20

dk−1
− dk for 1 ¬ k ¬ h.

Proof. By the third part of Lemma 3.2 c = (r0−1)(r0−2)−γ ¬ (r0−1)(r0−2)
since γ ­ 0 by Property 1.2. The equality c = (r0−1)(r0−2) is equivalent to γ = 0
which again by Property 1.2 is equivalent to δk = dk. Hence we get rk =

r20
dk−1
− dk

for 1 ¬ k ¬ h
Lemma 3.2 and Proposition 3.3 are due to [B-GB-P].

Remark 3.4. Although every characteristic sequence (r0, . . . , rh) is nice (see Pro-
position 1.8) the sequence (δ0, . . . , δh) associated with an Abhyankar-Moh se-
quence is not nice, in general. The following example is due to J. Gwoździe-
wicz: (r0, r1, r2) = (10, 4, 49) has the AM property but the associated sequen-
ce (δ0, δ1, δ2) = (10, 6, 1) is not nice. See also the Barrolleta’s example given
in [B-GB-P].

4. Semigroups of plane branches

Let K be an algebraically closed field of arbitrary characteristic and let K[[x, y]]
be the ring of formal power series in two wariables x, y with coefficients in K. For
any f, g ∈ K[[x, y]] we define the intersection multiplicity i0(f, g) by putting

i0(f, g) = dimKK[[x, y]]
/
(f, g) .

If f and g are without constant term then i0(f, g) < +∞ if and only if f, g have
no common factor h, h(0, 0) = 0. For any irreducible power series f ∈ K[[x, y]] we
put

G(f) = {i0(f, g) : g runs over all power series such that g 6≡ 0 (mod f)} .

ClearlyG(f) is a semigroup. We callG(f) the semigroup associated with the branch
f = 0.
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Theorem 4.1. (Bresinsky-Angermüller Semigroup Theorem)

1. Let f = f(x, y) be an irreducible power series. Suppose that n = i0(f, x) <
+∞. Then the semigroup G(f) of the branch f = 0 is generated by a
characteristic sequence with the initial term n.

2. Let G ⊂ N be a semigroup generated by a characteristic sequence with the
initial term n > 0. Then there exists an irreducible power series f = f(x, y)
such that i0(f, x) = n and G(f) = G.

A characteristic-blind proof of the above theorem is given in [GB-P2012].
Two branches f = 0 and g = 0 are equisingular if and only if G(f) = G(g). The

Abhyankar-Moh inequality appears when studing the plane curves with one branch
at infinity (see, for example [B-GB-P]). Here we present a characterization of the
AM inequality in terms of pencils of plane local curves.

Theorem 4.2. Let f ∈ K[[x, y]] be an irreducible power series, n = i0(f, x) < +∞
and let G(f) = Nr0+ · · ·+Nrh where (r0, . . . , rh) is a characteristic sequence with
the initial term r0 = n. Suppose that charK = 0. Let ft = f − tXn. Then the
following two conditions are equivalent:

(AM) dh−1rh < n2,
(E) the pencil (ft : t ∈ K) is equisingular i.e. ft are irreducible and G(ft) =
G(f) for t ∈ K.

Proof. See [GB-P2004], Section 5, p. 124.
Let F (x, y) = yn + a1(x)yn−1 + · · ·+ an(x) ∈ K[x, y] be a polynomial of degree

n > 1, irreducible in K[x, y]. Assume, after possibly a change of variables, that
deg ak(x) < k for k = 1, . . . , n. Hence F0(x0, y0) = yn0 + x0a1(

1
x0
)yn−10 + · · · +

xn0an(
1
x0
) ∈ K[x0, y0] is a distinguished polynomial. In what follows we assume

that the polynomial F (x, y) is irreducible at infinity i.e. F0(x0, y0) is irreducible in
K[[x0, y0]]. Given a polynomial G(x, y) ∈ K[x, y], we set

I(F,G) = dimKK[x, y]
/
(F,G)

and call

{I(F,G) : G runs over all polynomials such that G 6≡ 0 (modF )}

the degree semigroup associated with the affine curve F = 0.

Theorem 4.3. (Abhyankar-Moh Degree Semigroup Theorem)
Suppose that K is an algebraically closed field of characteristic zero and keep the no-
tation and assumption introduced above. Then the n-minimal system of generators
of the semigroup G(F0) has the AM property, the associated sequence (δ0, . . . , δh)
is nice and generates the degree semigroup of the affine curve F = 0.

Proof. See [R].
For more information the reader is referred to [B-GB-P] and [RL].
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[GB-P2004] E. R. Garćıa Barroso, A. Płoski, Pinceaux de courbes planes et invariants polaires,
Ann. Pol. Math. 82 (2004), 113–128.

[P1] A. Płoski, Introduction to the local theory of plane algebraic curves, in Analytic
and algebraic geometry Łódź University Press 2013, 115-134 (eds T. Krasiński and
St. Spodzieja)

[P2] A. Płoski, Plane algebroid branches after R. Apéry, Materiały na XXXV Konfe-
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PÓŁGRUPY NUMERYCZNE

Półgrup ιa numeryczn ιa nazywamy półgrup ιe liczb naturalnych G ⊂ N tak ιa, że
NWP(G) = 1. Takie półgrupy wyst ιepuj ιa w teorii osobliwości. W tym artykule
opisujemy za Angermüllerem półgrupy stowarzyszone z osobliwościami krzywych
płaskich a nast ιepnie opisujemy półgrupy, których ci ιagi generatorów spełniaj ιa nie-
równość Abhyankara-Moha, podstawow ιa w teorii krzywych płaskich o jednej gał ιezi
w nieskończoności.
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