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NUMERICAL SEMIGROUPS

Arkadiusz Ptoski (Kielce)

This paper is intended to give proofs of the results stated without proof
in [GB-P2015]. We do this in Sections 1 and 2 following the approach due to
Angermiiller [An] (see also [GB-P2012]). In Section 3 we consider characteristic
sequences satisfying the Abhyankar-Moh inequality which appears when studying
the plane curves with one branch at infinity (see [A-M], [B-GB-P]).

In Section 4 we present some applications of numerical semigroups to plane curve
singularities. In all the paper we denote by N the set of non-negative integers. If
ag, - - -0, € N then Nag + - - - + Na,,, stands for the set of all integers of the form
qoao + -+ + ¢mam, where qq,...,qn € N.If S C N, S # {0} then ged(S) denotes
the greatest common divisor of all integers belonging to S.

1. NICE SEQUENCES

Let us begin with the following lemma.

Lemma 1.1. Let (vg,...,vs) be a sequence of positive integers. Set d =
ged(vg, ... vk) for k = 0,...,h and ng = di—1/dy for k = 1,... h. Then for
every a € Zdy, we have Bézout’s relation

a = agVg + a1v1 + -+ + apvp

where ag,a1,...,ap € Z and 0 < ax < ng for k = 1,... h. The sequence
(ag, .- .,an) is unique.
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Proof. Existence. If h = 0 the lemma is obvious. Suppose that A~ > 0 and
that the lemma is true for h — 1. Since dj, = ged(dp—1,v,) we can write for every
a € (dp)Z: a = a’dp—1 + o’ v, with o’,a” € Z. For any integer | we have a = (a’ —
lop)dp—1 + (@’ 4+ 1dp—1)vp. Thus we can take o’ > 0. Dividing a” by np = dp—1/dp
we get o’ = npa’’ + ap, with 0 < ap, < nyp,. Therefore a = a’dp—1 + (npa” +ap)vp, =
(a' + ;—:a’”)dh_1 + apvp. By induction hypothesis we get (a’ + Z—Za’”)dh_l = agvo +
st ap_1vp_1 with 0 < ap < ng for 0 < kK < h—1 and we are done.

Uniqueness. Suppose that agvg + -+ + apvp, = agvg + -+ + ajvp with 0 <
ag,ay, < ny for k> 0. Let ap, < aj,. Then (a}, — ap)vp, = 0mod (v, ..., vs—1)Z and
(aj, — ap)vp, = 0(moddp—1) which implies (aj, — ap) gt = 0(modny). Therefore
a), — ap = 0 (modny) and aj, — ap, = 0 since 0 < a}, — aj, < nj,. Uniqueness follows
by induction m

In what follows we assume that dj, = ged(vg, ..., v) = 1.
We set
h
c=>Y» (ng—Lvg —wvo+1
k=1
and call ¢ the virtual conductor of the sequence (vy,...,vp).

Property 1.2. Let ¢ be the virtual conductor of the sequence (vg,...,vn). Then
c> 0 and c =0 if and only if vy = dy, for allk =1,... h such that ny > 1.

Proof. Obviously we have vy, > di, for k =1,..., h. Therefore we get
h h
CZZ(nk—l)Uk—Uo+1>Z(nk—1)dk—do+1=0.
k=1 k=1

Clearly ¢ = 0 if and only if vy = dj, for all k such that ny > 1=

Property 1.3. (Brauer) With the notation introduced above, if a is an integer,
a > c then a € Nvg + - - - + Nuoy,.

Proof. Let’s write Bézouts relation for the integer a: a = agvg+aiv1+---+apvn

where 0 < ap < nx — 1 for k = 1,...,h. Then agvy = a—zzzlakvk > c—
22:1 apvry = —vg + 1+ Zzzl(nk — 1 —ag)vg = —vg + 1. Consequently, we get
ag > %OH = -1+ % > —1 which implies ag > 0 m

Property 1.4. Suppose that lvg, € Nug + -+ + Nug_1 for an integer | > 0. Then
[ =0(modny).

Proof. If vy € Nyg + -+ + Nug_q then lvy = 0(moddi_1) and Z(Z—’;) =

0 (modnyg). Since 7& and ny are coprime we get | = 0 (mod ny) m

Definition 1.5. A sequence (vg,...,vp) is nice if ngvy, € Nug + -+ + Nug_; for
k=1,...,h

Note that nqjv; = (%)vo € Nug. Hence the sequence (vg, v1) is nice. The sequence

(6,7,8) is not nice but the sequence (6,9,7) is.
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Property 1.6. Let (vg,...,vp) be a nice sequence. Then for every k € {1,... h}:
vk & Nug + -+ + Nog_q if and only if ng, > 1.

Proof. If vy ¢ Nug+ - - -+ Nuvg_1 then ng > 1 by the definition of nice sequence.
If ng > 1 then vy ¢ Nug + - - - + Nog_1 by Property 1.4 m

Proposition 1.7. Let (vo,...,vs) be a nice sequence, ¢ the virtual conductor of
(vo,...,vp). Set G =Nuvg + - - + Nvy,. Then
(i) if a € Nug+- - -+Nug then a = agvg+- - -+agvr, with 0 < ag and 0 < a; < ny
fori=1,... k.
(ii) For every a,b € Z: if a+b = ¢ — 1 then exactly one element of the pair
(a,b) belongs to G.
(iii) The wvirtual conductor ¢ equals the conductor of G i.e. all integers bigger
than or equal to ¢ are in G and c — 1 ¢ G.
(iv) ¢ is an even number and #(N\ G) = ¢/2.

Proof. (i) If kK = 0 the assertion is obvious. Suppose that k£ > 0 and that the
property is true for k — 1. By assumption we have a = qovg + - - - + qrvr with ¢; > 0
for i = 0,..., k. By the Euclidean division of ¢i by ny we get gi = ¢, ni + ar with
0 < ar < ng. Thus a = qovg + -+ + qr—1Vk—1 + @,nEVK + arvr = @’ + apvy where
0<a, <ngand a’ € Nug + -+ 4+ Nog_; since nyvy, € Nug + - -+ + Noug_1. Use the
induction hypothesis.

(ii) Take two integers a,b € Z such that a + b = ¢ — 1. Let us write Bézout’s

relation a = agug +a1v1 +- - - +apvy, where ag € Z and 0 < a; <n; fori =1,... k.
Then by the definition of cwe get b=c—1—a = —vg + ZZ:I(nk — 1wk — agvg —
ZZ=1 arvr = —(ag + 1)vo + ZZ=1(”IC — 1 — ag)vg. This is a Bézout’s relation. To

finish the proof it suffices to remark that exactly one element of the pair (a9, —ag—1)
is greater than or equal to zero.

(iii) By Property 1.3 all integers > ¢ are in G. Since (¢ — 1)+ 0 = ¢— 1 and
0 € G we have ¢ — 1 ¢ G by (ii).

(iv) The mapping [0,c—1]NG 3 a—c—1—a € [0,c—1]N(N\ G) is bijective.
Therefore we have 2 - #([0,¢ — 1] N G) = ¢ and (iv) follows m

Proposition 1.8. Let (vo,...,vy) be a sequence of positive integers such that
ngvk < Vg1 fork=1,...,h —1. Then (vg,...,vx) is a nice sequence.

Proof. Fix k € {1,...,h — 1}. Since nivy = dk,ls—’; = 0(moddi_1) by Lem-
ma 1.1 we can write Bézout’s identity

NEUE = gy + a1v1 + -+ + Qp—1Vk—1

where agp € Z and 0 < a; < n; for i = 1,...,k — 1. Therefore, we get agvyg =
NRUE — G101 — =+ — Ap—1Vk—1 = MpVp — (1 — vy — -+ — (np—1 — Dog—y =
nkvk—[(nlvl—vl)Jr' . '+(le_1vk_1ka_1)} > nkka[(vgfvl)Jr' . '+('Uk*’Uk—1)} =
nEVr — Uk + v1 > 0 which implies ag > O m
Remark 1.9. In fact we have proved the following property, stronger than
“(vgy .. .,vp) is nice”: if ngvg = agvp + a1v; + -+ + ap—1vE—1 is a Bézout’s re-
lation then ag > 0.
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2. SEMIGROUPS OF NATURAL NUMBERS

A subset G of N closed under addition and containing 0 is called a semigroup.
In what follows we assume G # {0}. A semigroup is numerical if gcd(G) = 1.

Lemma 2.1. Let G be a semigroup and let vy € G, vy > 0. If G # Nuvg then there
exists a unique sequence vi,...,vy such that
(i) G # Nug+---+Nug_1 and vy, = min(G\(Nvg+- - -+Nuvg_1)) fork=1,... h
(ii) G =Nuvg+---+ Nuy,.

Proof. Observe that if vy, ..., v satisfy conditions (i) then vy # v; (mod vp) for
I < k. Indeed, from v, = v; (modvg) we get vy = v; + qup with ¢ € N which implies
v € Nug 4+ +++ + Nug_; since | < k. Therefore the conditions (i) define a finite
sequence. It suffices to take as (vq,...,v,) the longest sequence with property (i) m

We call the sequence (vg,v1,...,vp) the vg-minimal system of generators of G (if
G = Nuyg then the vp-minimal system of generators is (vg)). If vg = min(G \ {0})
then we say that (vg, v1, ..., vp) is the minimal sequence of generators of G. Clearly
ged G = ged(vo, v, - .., 0p) = dp, (dp, =1 if G is a numerical semigroup).

Lemma 2.2. Let (vg,...,v) be a vo-minimal system of generators of the semi-

group G. Then

(i) vi <-+- <wp,

(ii) min(G \ {0}) = min(vo, v1),

iii) ifv € G andv < v for a k>0 thenv € Nyg + -+ - + Nug_q,

iv) each v, k > 0 is an irreducible element of G, that is vy, is not a sum of
two nonzero elements of the semigroup G.

Proof. (i) We have G \ (Nvg + --- + Nug_2) D G\ (Nvg + -+ + Nup_1) for
k > 2. Since v € G\ (Nvg 4 -+ + Nug_1) by the definition of vy, we have vy, €
G\ (Nug + -4+ Nvg_s) and vg > min(G \ (Nvg + + -+ + Nug_g)) = vg—1 for k > 2.
Thus we get vg_1 < vg since vg_1 # Vg.

(
(

(ii) min(G \ {0}) = min(vg, v1,...,vs) = min(vg,v1) by (i).
(iii) If v € G\ (Nvg + -+ - + Nug_1) then v = govg + + -+ + qxvg + - - - + gnvp with
qi # 0 for an index [ > k. Thus v > qv; > v; > vy, which proves (iii).

(iv) Suppose that vy = v’ 4+ v” with nonzero v’,v” € G. Therefore v';v” < vy and
vg = v 4+ 0" € Nyg + - -+ + Nug_; by (iii). This contradicts the definition of vy, m

Lemma 2.3. Let (v, ...,vp) be a sequence of positive integers such that vy < -+ <
vy and v ¢ Nug + -+ + Nug_q1 fork=1,...,h. Then (vo,...,vs) is a vog-minimal
system of generators of the semigroup G = Nvg + - -+ + Nuy,.

Proof. We check like in the proof of Lemma 2.2 (iii) that vx = min(G \ (Nvg +
<o+ Nug_q)) fork=1,...,hnm

Proposition 2.4. Let G be a numerical semigroup with vo-minimal system of
generators (v, ...,vp). Suppose that ngpvg < vgy1 fork=1,...,k—1. Then

(i) ng > 1 fork=1,...,h,
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(il) ngvg < vgpaq fork=1,...,h —1,
(iii) the minimal system of generators of G is (vg,v1,...,vn) if v9 < w1,
(v1,v0,...,0p) if v1 < vo and v9 Z 0(modwy), (v1,...,vn) if v1 < wo

and vgp = 0 (mod vy).

Proof. By Proposition 1.8 the sequence (vg,v1,...,vy) is nice. Since vgi1 ¢
Nuvg 4 -+ + Nuy, we have ng > 1. Property (ii) is obvious. To check (iii) observe
vy

that the inequality niv1 < ve implies vy < vg since njv; = UO(E) and recall that

by Lemma 2.2 (ii) we have min(G \ {0}) = min(vg,v1) m

3. CHARACTERISTIC SEQUENCES

A sequence of positive integers (ro, ..., 75) is said to be a characteristic sequence
if it satisfies the following two axioms:

1. Set di, = ged(ro, ..., 1) for 0 < k < h. Then dy, > di41 for 0 < k < h and

dp = 1.
2. Set ng = dg_1/dy for k=1,...,h. Then ngry < rps+q for 1 <k < h.
We call ¢ the initial term of the characteristic sequence (rg,...,7). Let G =
Nrg + - -+ + Nry be the semigroup generated by a characteristic sequence. Then
(ro,...,rR) is a ro-minimal system of generators of G (cf. Lemma 2.3). In particular
G and ro determine the sequence (ro,...,73).

Proposition 3.1. Let G be the semigroup generated by a characteristic sequence
(roy...,rn). Then the conductor ¢ of G equals

h
C:Z(nk—l)rk—ro—kl.
k=1

The semigroup G is symmetric: if a,b € Z and a +b = ¢ — 1 then exactly one
element of the pair (a,b) belongs to G.

Proof. The proposition follows from Propositions 1.7 and 1.8.
A characteristic sequence (ro, . .., r) has the Abhyankar-Moh property (in short:
the AM property) if it satisfies the inequality

2
dp_1rp < Ty -

For every such sequence we define the associated sequence (do, . .., 0) by putting
-2
So =70, Op=—2—rpfor1 <k<h.
dr—1
Lemma 3.2. The associated sequence (0, ..., dn) satisfies the following properties

1) 6k > 0 and ged(do, - .., 0k) =dg for 0 < k < h,

2) nEdx > Op+1 for 1 <k < h.

3) If v is the virtual conductor of the sequence (do,...,0p) then v = (rg —
1(ro —2) —c.
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2 —dyp_ 2 —dj_
Proof. We have 0 = o pi B 1Tk > o pi h1Th > 0. The second part of
k—1 k—1

property 1) follows by induction on k. Since ged(dg—1,dx) = di we get
ng(éo, ey (5;.3) = ng(ng((SQ, ce ;5k—1); 6k) = gcd(dk_l, 6!@) = dk .

To check 2) it suffices to observe that the inequalities ngdx > dr11 and ngre < re41
are equivalent. Recall that v = ZZ:1(”1€ —1)dr — dp + 1. Thus we get

h 9 h 9 h
T T
y= (nkl)( 0 rk) 77“0+1:Z(nk71) 0 *T0+1*Z(nk*1)7ﬂk
k=1 di—1 k=1 i1 k=1
h
=(ro—1)>=> (nk—rp=(rg—1)(ro—2) —cm
k=1
Proposition 3.3. Suppose that (ro,...,rs) is a characteristic sequence with the

AM property. Let ¢ be the conductor of the semigroup Nrg + --- + Nry,. Then ¢ <
2
(ro — 1)(ro — 2) with equality if and only if 1, = 70— — dy, for 1 < k < h.

di—1

Proof. By the third part of Lemma 3.2 ¢ = (rg—1)(rg —2) —v < (ro — 1)(ro —2)
since v > 0 by Property 1.2. The equality ¢ = (19 —1)(ro —2) is equivalent to vy = 0
2

which again by Property 1.2 is equivalent to dx = di. Hence we get r = d:‘il —dg
for1<k<hm

Lemma 3.2 and Proposition 3.3 are due to [B-GB-P].

Remark 3.4. Although every characteristic sequence (rg, ..., 7p) is nice (see Pro-

position 1.8) the sequence (do,...,d;) associated with an Abhyankar-Moh se-
quence is not nice, in general. The following example is due to J. Gwozdzie-
wicz: (ro,7m1,72) = (10,4,49) has the AM property but the associated sequen-
ce (0p,01,92) = (10,6,1) is not nice. See also the Barrolleta’s example given
in [B-GB-P).

4. SEMIGROUPS OF PLANE BRANCHES

Let K be an algebraically closed field of arbitrary characteristic and let K{[z, y]]
be the ring of formal power series in two wariables z,y with coefficients in K. For
any f,g € K[z, y]] we define the intersection multiplicity io(f, g) by putting

io(f,g) = dimKK[[%yH/(f, 9) -

If f and g are without constant term then iy(f,g) < 400 if and only if f, g have
no common factor h, h(0,0) = 0. For any irreducible power series f € K[z, y]] we
put

G(f) = {io(f,9) : g runs over all power series such that g # 0 (mod f)} .

Clearly G(f) is a semigroup. We call G(f) the semigroup associated with the branch
f=0.
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Theorem 4.1. (Bresinsky-Angermiiller Semigroup Theorem)

1. Let f = f(x,y) be an irreducible power series. Suppose that n = ig(f, x) <
+o00. Then the semigroup G(f) of the branch f = 0 is generated by a
characteristic sequence with the initial term n.

2. Let G C N be a semigroup generated by a characteristic sequence with the
ingtial termn > 0. Then there exists an irreducible power series f = f(x,y)
such that io(f,z) =n and G(f) = G.

A characteristic-blind proof of the above theorem is given in [GB-P2012].

Two branches f = 0 and g = 0 are equisingular if and only if G(f) = G(g). The
Abhyankar-Moh inequality appears when studing the plane curves with one branch
at infinity (see, for example [B-GB-P]). Here we present a characterization of the
AM inequality in terms of pencils of plane local curves.

Theorem 4.2. Let f € K][z,y]] be an irreducible power series, n = io(f,x) < 400
and let G(f) = Nrg+-- -+ Nry, where (ro,...,7) is a characteristic sequence with
the initial term ro = n. Suppose that charK = 0. Let f; = f — tX™. Then the
following two conditions are equivalent:
(AM) dp_1rh < 712,
(E) the pencil (f; : t € K) is equisingular i.e. f; are irreducible and G(f;) =
G(f) fort e K.

Proof. See [GB-P2004], Section 5, p. 124.

Let F(z,y) =y +ai(z)y" "t + -+ an(z) € K[z,y] be a polynomial of degree
n > 1, irreducible in K[z,y]. Assume, after possibly a change of variables, that
degai(z) < k for k = 1,...,n. Hence Fy(zo,y0) = y§ + :coal(g}o)yg—l T
xgan(%) € Klxzo, yo] is a distinguished polynomial. In what follows we assume
that the polynomial F(x,y) is irreducible at infinity i.e. Fo(xo,yo) is irreducible in
K[[zo, y0]]. Given a polynomial G(z,y) € K|z, y], we set

I(F,G) = dimeKl2:] /(7 )
and call
{I(F,@) : G runs over all polynomials such that G # 0 (mod F')}
the degree semigroup associated with the affine curve F' = 0.

Theorem 4.3. (Abhyankar-Moh Degree Semigroup Theorem)

Suppose that K is an algebraically closed field of characteristic zero and keep the no-
tation and assumption introduced above. Then the n-minimal system of generators
of the semigroup G(Fy) has the AM property, the associated sequence (dg,...,0n)
is mice and generates the degree semigroup of the affine curve F' = 0.

Proof. See [R].
For more information the reader is referred to [B-GB-P] and [RL].
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POLGRUPY NUMERYCZNE

Pétgrupg numerycznag nazywamy poédlgrupe liczb naturalnych G C N taka, ze

NWP(G)

= 1. Takie pdélgrupy wystepuja w teorii osobliwosci. W tym artykule

opisujemy za Angermiillerem po6lgrupy stowarzyszone z osobliwo$ciami krzywych
plaskich a nastepnie opisujemy pélgrupy, ktorych ciagi generatoréw spelniaja nie-
réwnosé Abhyankara-Moha, podstawowsg w teorii krzywych plaskich o jednej galezi
w nieskonczonosci.
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