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The classical theorems on polynomial equations: Max Noether’s Fundamental
Theorem, The Jacobi Formula and Bézout’s Theorem were presented in nineteenth-
century literature (see for example [La] and [Ne]) for polynomial equations with
indeterminate coefficients. In this article we give the present-day version of these
theorems. To prove Max Noether’s Fundamental Theorem which is basic for our
approach we use Hilbert’s Nullstellensatz and the Cohen-Macauley property of
parameters. An elementary proof of the Cohen-Macauley property is given in [P1].

1 Introduction

Let K be an algebraically closed field (of arbitrary characteristic). For any polyno-
mial P = P(X) € K[X] in n variables X = (X1,..., X,,) we denote by deg P the
total degree of P and by PT the principal part of P, i.e. the sum of all monomials
of degree deg P appearing in P. By convention deg(0 = —oo, 07 = 0.
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Definition 1 Let F; € K[X], 1 < i < n be nonconstant polynomials in n variables
X = (X1,...,X,). The system of polynomial equations Fy1(X) =---=F,(X)=0
is general if the following conditions hold

1. the system of polynomial equations F1(X) = --- = Fp(X) = 0 has no so-
lutions at infinity i.e. the system of homogeneous equations Fy (X) = --- =
FX(X) =0 has in K" only the zero-solution X = 0;

2. all solutions in K™ of the system F1(X) = --- = F,,(X) = 0 are simple i.e.
the jacobian det (g;l) does not vanish on the solutions of this system.

J

Let us consider some examples:

1. The system of linear equations a;1 X7 + -+ + a;n X, —b; =0, 1 <i < nis
general if and only if det(a;;) # 0.

2. If F; = Xidi + cilXZdi*l + -+ g, € K[X;], 1 < i < n, are one-variable
polynomials of degree d; > 0 with simple roots then the system Fy(X;) =
<o = F,(X,) =0 is general.

3. Let s;(X), 1 < i < n be symmetric polynomials defined by identity (T —
Xn)y oy 8n(X) = (=1)"X;y -+ - X, Let D(s1,...,58,) be the discriminant of

the polynomial T 4+ s;T"~1 + ... + s,, with general coefficients si, ..., Sp.
95, (X)) \ 2 & 2
Recall that D(s1(X),...,s,(X)) = (det (W)) = H (x; —x;)° (see
' i=1,i>j
pages 150-151 of [Pe]). It is easy to see that the system of polynomial equ-
ations s1(X) —a; = -+ = $,(X) — ap, = 0, where a; € K, is general if and

only if D(ay,...,a,) #0.

In the sequel we put F' = (Fy,..., F,) € K[X]|", Jac F = det (81;7)((5()) and V(F) =
{z = (z1,...,25) € K" : Fi(z) = --- = F,(z) = 0}. The system of polynomial
equations F1(X) = -+ = F,,(X) = 0 will be denoted F' = 0.

Now we may formulate the three classical theorems mentioned in the title of these
lectures.

Theorem 1 (Max Noether’s Fundamental Theorem) Let F' = 0 be a gene-
ral system of polynomial equations. If a polynomial G vanishes on the set V(F)

then there exists polynomials Ay,..., A, € K[X] such that G = ZAiFi and
i=1

deg A;F; < deg G fori e {1,...,n}.
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We will give the proof of Theorem 1 in Section 3 of these notes. Note that with the
notations of Theorem 1 we have deg G = max!_,(deg A;F;) since the inequality
deg G < max?_,(deg A;F;) is obvious. The following property is an immediate
consequence of Max Noether’s Theorem.

Corollary 1 The solutions of the general system of polynomial equations F1(X) =
= F,(X) = 0 do not lie on a hypersurface of degree strictly less than

mi{l(deg F;). Moreover the system F1(X) = --- = F,(X) = 0 has at least one
1=

solution in K™.

Proof. If the solutions of the system Fy(X) = --- = F,(X) = 0 lie on the
hypersurface G(X) = 0 then degG = m?ilx(deg AF;) > ng{l(degFi). This pro-
ves the first assertion. To check the second assertion suppose that the system

Fi(X) = -+ = F,(X) = 0 has no solutions in K™. Taking G = 1 we get
deg G > min}*_,(deg F;) > 0 by the first part of the corollary. Contradiction.

Using Max Noether’s Fundamental Theorem we prove in Section 4

Theorem 2 (The Jacobi Formula) Let F = 0 be a general system of polyno-
mial equations. Then the set V. =V (F) is finite and for every polynomial H € K[X]

of degree deg H < Z(deg F; — 1) one has

i=1

Wy,
i Jac F(x)

H(x)
cF

Note that if n = 1 then the Jacobi Formula follows easily from the Lagrange
Interpolation Theorem: let F(X) = (X — z1)--- (X — x4) € K[X] be a univariate
polynomial of degree d > 1 such that x; # x; for i # j. Then

d
HX) = 30 b (X =) (K= )+ (X - )

provided that H(X) is a polynomial of degree strictly less than d.

The assumption on the degree of H cannot be weakened. If char K = 0 then

n H
H = Jac F is of degree Z(deg F;,—1) and Z % =V (F) #£0.
i=1 wev(p) "~ o€ (@)

Corollary 2 (The Cayley-Bacharach Theorem) If a polynomial H of degree

strictly less than Z(deg F; — 1) vanishes on all points of V.=V (F) but one then
i=1
it necessarily vanishes on V.
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The oldest result on general systems of polynomial equations is due to Etienne
Bézout (Théorie générale des équations algébriques, Paris, 1770).

Theorem 3 (Bézout’s Theorem) Let F =0 be a general system of polynomial

n
equations. Then it has exactly H deg F; solutions.

i=1
We give the proof of Theorem 3 in Section 3. To prove Bézout’s Theorem we will
use Max Noether’s Fundamental Theorem and the Poincaré series (see Section 5).

2 Homogeneous systems of parameters

Let ¢ = (¢1,...,¢n) be a sequence of homogeneous polynomials ¢, € K[X], X =
(X1,...,X,). Using Hilbert’s Nullstellensatz we check

Lemma 1 Let K be an algebraically closed field. Then the following conditions are
equivalent:

1. the system of homogeneous equations ¢1(X) = -+ = ¢,(X) = 0 has in K™
only the zero-solution X = 0.

2. there is an integer N > 0 such that all monomials X{* -+ X a1+ Fay, =
N belong to the ideal I(¢) = (é1,...,0n)K[X] generated by ¢1,...,0, in
K[X].

Now let K be an arbitrary field.

Definition 2 The sequence of homogeneous forms ¢ = (¢1,...,¢,) € K[X]|™ is
a homogeneous system of parameters (h.s.0.p.) if and only if the ideal generated
by ¢1,...,¢n in K[X] contains all monomials of sufficiently high degree i.e. if it
satisfies the second condition of the above lemma.

The following result on h.s.o.p. is basic for us. For the proof see [St] (page 37, The
Cohen-Macauley property).

Theorem 4 If ¢ = (é1,...,¢0n) € K[X]™ is a h.s.o0.p. then for every k, 0 < k <n
and for every homogeneous polynomial ¢ such that Ydrr1 € (¢1,...,05) K[X] we
have ¥ € (¢1, ..., 0r)K[X].

3 Proof of Max Noether’s Fundamental Theorem

Let Fy,..., F, € K[X] be polynomials (we do not assume that the system F;(X) =
-+ = F,(X) = 01is generall) in n variables X = (Xq,..., X,,) with coefficients in an
algebraically closed field K. Let G € K[X]. We say that the sequence G, Fi, ..., F,
satisfies Noether’s conditions at x € K™ if there exists a polynomial D, = D, (X) €
K[X] such that D,(x) # 0 and D,G is in the ideal (Fi,..., F,)K[X].
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Lemma 2 Let G, Fy,...,F, € K[X] be polynomials such that for every x € K"
the sequence G, Fy, ..., F, satisfies Noether’s conditions at x. Then G € (Fy,...,
F,)K[X].

Proof. The system of polynomial equations D,(X) = 0, z € K™ has no solutions

in K™. Therefore by Hilbert’s Nullstellensatz there exists a family of polynomials

M, (X), z € K" such that §{z € K" : M;(X)# 0} < +ocand »  M,D,=1in
TeK"™

K[X]. Then we get G = ( > MIDI> G= > M,(D,G)€ (F,...,F,)K[X].

rzeK™ zeKn"

Remark 1 Ifx ¢ V(Fy,..., F,) then for any polynomial G the sequence G, Fy, .. .,
F,, satisfies Noether’s conditions at x. It suffices to take D, = F; where F; is such
that F;(x) # 0.

Lemma 3 Let F,..., F, € K[X] be polynomials such that Fy(z) = -+ = F,(x) =
0 and det <g§; (x)) #0 at a point x = (x1,...,2,) € K™. Then there is a polyno-
mial D(X) € K[X] such that (X; — z;)Dy € (F1,...,Fo)K[X] forie{l,...,n}
and D (z) # 0.

Proof. Write F;(X) = (X1 — 21)Da(X) + -+ + (Xn, — 25)Din(X) in K[X] for
i € {1,...,n}. Differentiating and putting X = = we get Dij(w) = x) Let
D, (X) :=det(D;;(X)). Then D,(z) # 0 and by Cramer’s Rule (X; — J:Z +(X) €

(Fi, ..., F)K[X].

Proposition 1 Let Fy,...,F, € K[X] be polynomials such that for every x €
V(Fy,...,F,) one has det (g?] (m)) #0. Let G € K[X] be a polynomial such that
G(z) =0 forallx € V(F1,...,F,). Then G € (F},...,F,)K[X].

n
Proof. Let = (z1,...,2,) € K™. If x € V(F,...,F,) then G(X) = Z:(XZ -
i=1
2;)Gi(X). By Lemma 3 there is a polynomial D,(X) € K[X] such that (X; —
x;)Dy(X) € (F1,...,F,)K[X]. Thus D,G € (Fy,..., F,)K[X]. By Lemma 2 and
Remark 1 we get G € (Fy,..., F,)K[X].
What remains to be proved in Noether’s Theorem is the bound on the degrees.

Proposition 2 Let Fy,...,F, € K[X] be nonconstant polynomials such that the
homogeneous forms F;t € K[X], i € {1,...,n}, form a h.s.o.p. Then for every
n

G e (F1,...,F,)K[X] there exists Ay,..., A, € K[X] such that G = ZAiFi and
i=1

deg(A;F;) < deg(G) forie{1,...,n}.
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Proof. Let Xy be a new variable and let G(Xo, X), F;(Xo,X), i € {1,...,n},
be the homogenization of G(X) and F;(X) for ¢ € {1,...,n}. Recall that

G(Xo, X) = X25Cq (% §0) Since G € (F1,...,Fy)K[X] we get XNG €

(Fl,...,ﬁn,)K[Xo,X] for an integer N > 0. It is easy to see that X, F,...,
F, form a h.s.o.p. in K[Xp, X]. By Theorem 4 X}V is not a zero-divisor mod

(F’l, ceey Fn) and we may write G = Zwiﬁi where 1); are homogeneous polyno-
i=1

mials such that ;F; is either 0 or of degree degG. Let A;(X) = v;(1,X) for

i € {1,...,n}. Putting Xy = 1 in the identity G = Zwlﬁi we get G = ZAiFi

i=1 i=1

and deg(A;F;) < degG fori € {1,...,n}.

Remark 2 With the assumptions of Proposition 2 one has mjalx(deg A;F;) =degG
and Gt = ZA;FF;F where I = {i : deg(A;F;) = deg(G)}. In particular GT €

el
(Ff,... FF).

Proof of Max Noether’s Fundamental Theorem. Max Noether’s Theorem
follows immediately from Proposition 1 and Proposition 2.

4 Proof of the Jacobi formula (cf. [Ne])

Lemma 4 Let F = (F1,...,F,) € K[X]|" be polynomials with coefficients in a
field K. Then the set W = {x € K™ : F(z) = 0 and Jac F'(z) # 0} is finite.

Proof. By Lemma 3 for every « € W there is a polynomial D, = D, (X) such that
D, (z) # 0 and

(X;—z;)D, € (Fr,...,F,) fori=1,...,n.

Let us put U, = {& € K" : D,(Z) # 0} for every x € W. Then U, C K" is
a Zariski open subset of K™ and W N U, = {z}. Since K[X] is a noetherian ring

S
there exists a finite sequence x1, ..., xs; € W such that U U, = U U, . Obviously
zeW =1
W = {xl,...,xs}.

Now, let F' = (Fy,..., F,) € K[X]" be a sequence of polynomials such that the set

V = V(F) is finite. If R, S € K[X] and S(z) # 0 for all z € V then we define the
R(z)

S(x)

trace of % with respect to F' by putting Tr g (%) = Z
ev
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If the system of polynomial equations F' = 0 has only simple solutions then

Tr (%) = Z m is well-defined.
eV

Lemma 5 Let F = (Fy,...,F,) € K[X]" and G = (G1,...,Gy) € K[X]™ be such
that the systems of polynomial equations F = 0 and G = 0 have only simple zeroes.

Suppose that G; = ZAiij in K[X]. Let A = det(A;;). Then Trp (525) =
i=1
AH
Trg (JacG)'

Proof. Differentiating the identities

(1) Gi=_ AiF;
j=1
we get
(2) JacG = A Jac F (mod (Fy, ..., F,)K[X]).

From (1) and (2) we get that for all z € K™, F(x) = 0 if and only if G(z) = 0 and
A(z) # 0. Indeed, if F(z) =0 then G(z) =0 by (1) and Jac G(z) = A(z)Jac F(x)
by (2). Thus Jac G(z) # 0 by the hypothesis that all the zeroes of the system G = 0
are simple, consequently we get A(x) # 0.

On the other hand suppose that G(x) = 0 and A(x) # 0. Then from (1) we get

0= ZAij(x)Fj (x) for ¢ € {1,...,n} and F;(z) = 0 by Cramer’s Rule. Summing
j=1

up we have V(F) = V(G)\V(A) and JacG = AJac F on V(F).
Now, we get

- ( ) _ _H(@) _
Jac F ) Jac F(x)
A(z)H(z) A(z)H(x) AH
Z acG(r) Z Jac G(z) =Tre <JaCG>'
2eV(Q\V(A) 2eV(G)

Lemma 6 If G = (Gy,...,G,) € K[X]" where G; = Gi(X;) € K[X;], i €
{1,...,n}, are nonconstant polynomials with simple zeroes then for every poly-
n

nomial H € K[X], deg H < Z(degGi —1) one has Tr (325) = 0.

i=1

Proof. By linearity of the trace we may assume that H = X{*--- X Tt is

n
Xal Xan
easy to see that Tr¢ (725) = Trg, (G—li) o Trg, ( A ) If deg H = Zai <
i=1
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Z(degGi —1) then a; < deg G; — 1 for some i € {1,...,n} and Trg, (XG;> =0.
i=1
Consequently Tr ¢ (525) = 0 and we are done.

Proof of the Jacobi Formula. Let F' = 0 be a general system of polynomial
equations. Then the set V' = V(F) is finite by Lemma 4 (and non-empty by Corol-
lary 1). Let II; : K™ — K be the projection given by II;(z;,...,x,) = x; and put
Gi(X;) = H (X; — x;) € K[X;] where V; = II;(V(F)). Then G;(X;) is a polyno-
z;€V;

mial with simple zeroes vanishing on V. By Max Noether’s Fundamental Theorem
we may write G; = A Fy + -+ + A F,, € K[X] with deg(A;;F;) < degG; for
i € {1,...,n}. Let A = det(A;;). For any permutation (ji,...,j,) of (1,...,n)
we get deg(£Aqj, -+ Anj,) < (degGr — degFj,) + -+ + (deg G,, — degF},) =
Z(deg G; — deg F;) and consequently deg A < Z(deg G; —deg F;).

i=1 i=1

Let H € K[X] be a polynomial such that deg H < Z(degFi — 1). Therefore

i=1
n n

deg(AH) < ) (degG; — deg Fy) + » (degF; — 1) = » (degG; — 1). Let G =
i=1 =1 i=1

(G1,...,Gy). By Lemma 5 and Lemma 6 we get Tr p (Ia%) =Trg (J:fG) =0.

5 Poincaré series

Let ¢1,...,¢, € K[X], X = (X1,...,X,) be a sequence of homogeneous forms
of degrees di,...,d, > 0. For any integer d > 0 we denote by K[X]; the linear
K-linear subspace of K[X] generated by monomials X' --- X a3 +---+a, = d.
For any integer m, 1 < m < n we put (¢1,...,dm)q the K-linear subspace of K[X]q4
consisted of the sums ¥y ¢ + - - - + ¥, @y, Where 1; are homogeneous polynomials
such that ¥;¢@; is either 0 or of degree d. We put, by convention, (¢1,...,¢m)a = (0)g
if m=0.

Theorem 5 Suppose that ¢1,..., ¢, is a sequence of homogeneous parameters in
K[X]. Then for any integer m, 0 < m < n we have

H?il(]' — Tdi)

Z(dlmK K[X]d/(¢1aa¢m)d)Td: (1 _T)n

d>0

Remark 3 The formal power series which appears on the left side of the above
identity is named the Poincaré series of the graded algebra K[X|/(¢p1,...,bIm) =~

D K(Xa/ (b1, bm)a-

d>0

To prove Theorem 5 we need two lemmas.
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1

Lemma 7 Z (dimg K[X]q) T¢ = =1

d>0

Proof. Let T1,...,T, be new variables. Then
Z T ] - Z 7o | = Z T ... Ton,
a1 >0 apn =0 (1.0 )ENT

Let T be a variable. Substituting 7y = --- =1T,, =T we get

n

ZTa — Z Toz1+-~~+o¢n _

a>0 (1.0 )ENT
=>( > Hrt=> (dimg K[X]a)T*
d>20 a1+-+a,=d d>0

and the Lemma follows since Z T = in Z[T].

a=>0

1-T

Lemma 8
1. dimg K[X]d/(¢1,...,¢m)d:dimK K[X]d/(¢17---7¢m—1)d for d < dy,.

2. dimK K[X]d/((bl, RN ¢m)d = dimK K[X]d/((bla ey (bmfl)d —
dimK K[X]d—dm ((bl7 ey ¢m—1)d—dm for d > dm.

Proof. Property (1) is obvious since (¢1, ..., 0m)d = (D1, -+, Pm—1)a for d < dp,.
Let U be a K-linear space of finite dimension. Then for any subspaces W,V C U
such that W C V we have dimg U/W = dimg U/V + dimg V/W. Taking U =
K[X]d, V= (¢1, ey ¢m)d and V = (¢1, ey (bm—l)d we get

(3) dimg K[X]a/(¢1,---sIm-1)a = dimg K[X]|a/(¢1,-..,Pm)d
+ dimK(¢1a"'7¢m)d/(¢1a"'a¢m—1)d-

By Theorem 4 ¢,, is not a zero-divisor mod (¢1,...,¢mn—1). Consequently the
mapping A — A¢,, where A € K[X]4_q4,, induces an isomorphism of spaces
(D1, dm)a/ (1, dm-1)a and K[X]a—a,, /($1,- .., dm-1)a—a,, and we get

(4) dimg (¢1,- .., Om)a/ (D1, Om—1)a = dimg K[X]|q_q,, /(¢1,-- -, dm—1)d—d,,-

From (3) and (4) we obtain Property (2) of Lemma.
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Now we can give

Proof of Theorem 5.
If m = 0 then the formula follows from Lemma 7. Suppose that m > 0 and that
Theorem 5 holds for m — 1. So we have

(1—=T%)...(1— Tdm—l)
(1-=1)" '

Z (dlmK K[X]d/(¢1a ceey (bm—l)d) Td =

d=0

Using Lemma 8 we get

> (dimg K[X]a/(¢1, -, 6m)a) T =

d=0
_Z (dimg K[X]a/(¢1,- - dm-1)a) T —
d>0
— Y (dimg K[X]g-a, /(615 bm—1)a-a,) T* =
d>d'm
LT (T (TR (=T
B i-1r (=1 B
=Ty (1= T%)
- =1
Corollary 3 If ¢1,...,0, is a system of homogeneous parameters in K[X]| with
deg ¢; = d;, then
Proof. If m = n then by Theorem 5 we get
ZdlmK X]a/ (@1, 6n)a) T* =
d>0
(5) :(1+T—|—-~-—I—Td1_1)~--(1+T—|—-~-—|—Td”'_1).

Therefore dimg (K[X]a/(¢1,...,¢n)a) = 0 for d > > ,(d; — 1). Substituting
T =11in (5) we get

S dimg K[X]a/ (61, s bn)a = dy -+~ do.

d=>0

It suffices to observe that K[X]/(¢1,...,0n) and ®g>oK[X]a/(P1,--., Pn)a are
K-isomorphic.
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6 Proof of Bézout’s Theorem

We keep the notations of the Introduction. We consider a general system of po-
lynomial equations F' = 0 and its set of solutions V(F'). We know that V(F') is
non-empty (see Corollary 1) and finite (see Lemma 4). Let us denote I(F) the ideal
generated by polynomials F1, ..., F}, in the ring K[X]. To prove Bézout’s Theorem
we need

Lemma 9
tV(F) = dimg K[X]/(I(F)).

Proof. Let us consider the K-algebra K[V] of polynomial functions on the set
V = V(F). It is easy to see that the family {e, : z € V} where e,(z) = 1 and
ex(z') = 0 for 2’ € V\{z} is a K-linear basis of K[V]. Thus dimg K[V] = V.
On the other hand the K-linear homomorphism o : K[X]| — K[V] defined by
o(P) = Py, has by Proposition 1 the kernel I(V'). Thus K[V] and K[X]/I(F') are
isomorphic and the lemma follows.

Lemma 10
dimy K[X]/(I(F)) = dimg K[X]/(I(F*)).

Proof. Let ¢ = 1,€1,...,e6p_1 be a monomial basis mod I(F7T) (i.e. €g,e€1,...,
€p_1 are monomials such that the images of €g, €1,...,ep_1 in K[X]/I(F7T) form a
K-linear basis). We will check that eg, €1,...,€ep_1 is a linear basis mod I(F). First,
let us prove that €, €1,...,€ep_1 are linearly independent mod I(F’). Suppose that
there is a non-zero sequence cg,...,cp_1 € K such that cpeg+---+cp_1€p_1 =0
mod I(F). Let I = {i:¢; # 0} and Iy = {i € I : deg(3_, cje;) = dege;}. Then,
by Remark 2 we get Y7, ., cie; = 0 (mod I(FT)) which contradicts the linear
independence of ¢; mod I(F'T).

To check that every polynomial G is a linear combination of ¢; mod I(F') we use
induction on deg G. Let N > 0 be an integer and suppose that every polynomial
of degree strictly less than N is a linear combination of ¢; mod I(F'). Let G be
a polynomial of degree N. It suffices to check that G is a linear combination of
€0,---,€p—1 mod I(F). Since €g,...,ep_1 form a linear basis mod I(FT) we may
write

Gr =1l + -+ ouF S+ i

where ¢; are homogeneous forms such that qSiFf is of degree degG™ = N. Write
F, = F;r + R;, 1 <1t < n, where deg R; < deg Ff Then we get

Gt =¢1(F1 — R1)+ -+ ¢n(Fr — Ry) +Zcifi =

= ¢1(_R1) +---+ ¢n(_R7L) + ZCZ‘Q’ mod I(F)
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where deg(—¢p1R1 — -+ — ¢ R,) < N and we are done.
Now we can prove Bézout’s Theorem:

Proof of Theorem 3. By Lemma 9, Lemma 10 and Corollary 3 we have

4V (F) = dimg K[X]/I(F) = dimgx K[X]/I(F*) = ﬁ deg F.

The reader will find more about Bézout’s Theorem in [LJ].
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LECTURES ON POLYNOMIAL EQUATIONS:
MAX NOETHER’S FUNDAMENTAL THEOREM,
THE JACOBI FORMULA AND BEZOUT’S THEOREM

Summary. Using some commutative algebra we prove Max Noether’s Theorem,

the Jacobi Formula and Bézout’s Theorem for systems of polynomial equations
defining transversal hypersurfaces without common points at infinity.

todz, 11 - 15 stycznia 2010 7.



