
MATERIAŁY NA XXXI KONFERENCJ”E SZKOLENIOW”A

Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

ZESPOLONEJ

2010 Łódź str. 15

LECTURES ON POLYNOMIAL EQUATIONS:

MAX NOETHER’S FUNDAMENTAL THEOREM,

THE JACOBI FORMULAAND BÉZOUT’S THEOREM
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The classical theorems on polynomial equations: Max Noether’s Fundamental
Theorem, The Jacobi Formula and Bézout’s Theorem were presented in nineteenth-
century literature (see for example [La] and [Ne]) for polynomial equations with
indeterminate coefficients. In this article we give the present-day version of these
theorems. To prove Max Noether’s Fundamental Theorem which is basic for our
approach we use Hilbert’s Nullstellensatz and the Cohen-Macauley property of
parameters. An elementary proof of the Cohen-Macauley property is given in [Pł].

1 Introduction

Let K be an algebraically closed field (of arbitrary characteristic). For any polyno-
mial P = P (X) ∈ K[X] in n variables X = (X1, . . . , Xn) we denote by degP the
total degree of P and by P+ the principal part of P , i.e. the sum of all monomials
of degree degP appearing in P . By convention deg 0 = −∞, 0+ = 0.
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Definition 1 Let Fi ∈ K[X], 1 ¬ i ¬ n be nonconstant polynomials in n variables
X = (X1, . . . , Xn). The system of polynomial equations F1(X) = · · · = Fn(X) = 0
is general if the following conditions hold

1. the system of polynomial equations F1(X) = · · · = Fn(X) = 0 has no so-
lutions at infinity i.e. the system of homogeneous equations F+1 (X) = · · · =
F+n (X) = 0 has in K

n only the zero-solution X = 0;

2. all solutions in Kn of the system F1(X) = · · · = Fn(X) = 0 are simple i.e.

the jacobian det
(
∂Fi
∂Xj

)
does not vanish on the solutions of this system.

Let us consider some examples:

1. The system of linear equations ai1X1 + · · · + ainXn − bi = 0, 1 ¬ i ¬ n is
general if and only if det(aij) ̸= 0.

2. If Fi = Xdii + ci1X
di−1
i + · · · + cidi ∈ K[Xi], 1 ¬ i ¬ n, are one-variable

polynomials of degree di > 0 with simple roots then the system F1(X1) =
· · · = Fn(Xn) = 0 is general.

3. Let si(X), 1 ¬ i ¬ n be symmetric polynomials defined by identity (T −
X1) · · · (T −Xn) = Tn+ s1(X)Tn−1+ · · ·+ sn(X) i.e. s1(X) = −(X1+ · · ·+
Xn),· · · , sn(X) = (−1)nX1 · · ·Xn. Let D(s1, . . . , sn) be the discriminant of
the polynomial Tn + s1Tn−1 + · · · + sn with general coefficients s1, . . . , sn.

Recall that D(s1(X), . . . , sn(X)) =
(
det
(
∂si(X)
∂Xj

))2
=

n∏
i=1,i>j

(xi − xj)2 (see

pages 150-151 of [Pe]). It is easy to see that the system of polynomial equ-
ations s1(X) − a1 = · · · = sn(X) − an = 0, where ai ∈ K, is general if and
only if D(a1, . . . , an) ̸= 0 .

In the sequel we put F = (F1, . . . , Fn) ∈ K[X]n, JacF = det
(
∂Fi(X)
∂Xj

)
and V (F ) =

{x = (x1, . . . , xn) ∈ Kn : F1(x) = · · · = Fn(x) = 0}. The system of polynomial
equations F1(X) = · · · = Fn(X) = 0 will be denoted F = 0.

Now we may formulate the three classical theorems mentioned in the title of these
lectures.

Theorem 1 (Max Noether’s Fundamental Theorem) Let F = 0 be a gene-
ral system of polynomial equations. If a polynomial G vanishes on the set V (F )

then there exists polynomials A1, . . . , An ∈ K[X] such that G =
n∑
i=1

AiFi and

degAiFi ¬ degG for i ∈ {1, . . . , n}.
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We will give the proof of Theorem 1 in Section 3 of these notes. Note that with the
notations of Theorem 1 we have degG = maxni=1(degAiFi) since the inequality
degG ¬ maxni=1(degAiFi) is obvious. The following property is an immediate
consequence of Max Noether’s Theorem.

Corollary 1 The solutions of the general system of polynomial equations F1(X) =
· · · = Fn(X) = 0 do not lie on a hypersurface of degree strictly less than
n
min
i=1
(degFi). Moreover the system F1(X) = · · · = Fn(X) = 0 has at least one

solution in Kn.

Proof. If the solutions of the system F1(X) = · · · = Fn(X) = 0 lie on the

hypersurface G(X) = 0 then degG =
n
max
i=1
(degAiFi) ­

n
min
i=1
(degFi). This pro-

ves the first assertion. To check the second assertion suppose that the system
F1(X) = · · · = Fn(X) = 0 has no solutions in Kn. Taking G = 1 we get
degG > minni=1(degFi) > 0 by the first part of the corollary. Contradiction.

Using Max Noether’s Fundamental Theorem we prove in Section 4

Theorem 2 (The Jacobi Formula) Let F = 0 be a general system of polyno-
mial equations. Then the set V = V (F ) is finite and for every polynomial H ∈ K[X]

of degree degH <
n∑
i=1

(degFi − 1) one has

∑
x∈V (F )

H(x)
JacF (x)

= 0.

Note that if n = 1 then the Jacobi Formula follows easily from the Lagrange
Interpolation Theorem: let F (X) = (X − x1) · · · (X − xd) ∈ K[X] be a univariate
polynomial of degree d > 1 such that xi ̸= xj for i ̸= j. Then

H(X) =
d∑
i=1

H(xi)
F ′(xi)

(X − x1) · · · ̂(X − xi) · · · (X − xd)

provided that H(X) is a polynomial of degree strictly less than d.

The assumption on the degree of H cannot be weakened. If charK = 0 then

H = JacF is of degree
n∑
i=1

(degFi − 1) and
∑
x∈V (F )

H(x)
JacF (x)

= ♯V (F ) ̸= 0.

Corollary 2 (The Cayley-Bacharach Theorem) If a polynomial H of degree

strictly less than
n∑
i=1

(degFi − 1) vanishes on all points of V = V (F ) but one then

it necessarily vanishes on V .
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The oldest result on general systems of polynomial equations is due to Étienne
Bézout (Théorie générale des équations algébriques, Paris, 1770).

Theorem 3 (Bézout’s Theorem) Let F = 0 be a general system of polynomial

equations. Then it has exactly
n∏
i=1

degFi solutions.

We give the proof of Theorem 3 in Section 3. To prove Bézout’s Theorem we will
use Max Noether’s Fundamental Theorem and the Poincaré series (see Section 5).

2 Homogeneous systems of parameters

Let ϕ = (ϕ1, . . . , ϕn) be a sequence of homogeneous polynomials ϕi ∈ K[X], X =
(X1, . . . , Xn). Using Hilbert’s Nullstellensatz we check

Lemma 1 Let K be an algebraically closed field. Then the following conditions are
equivalent:

1. the system of homogeneous equations ϕ1(X) = · · · = ϕn(X) = 0 has in Kn

only the zero-solution X = 0.

2. there is an integer N > 0 such that all monomials Xα11 · · ·Xαnn , α1+· · ·+αn =
N belong to the ideal I(ϕ) = (ϕ1, . . . , ϕn)K[X] generated by ϕ1, . . . , ϕn in
K[X].

Now let K be an arbitrary field.

Definition 2 The sequence of homogeneous forms ϕ = (ϕ1, . . . , ϕn) ∈ K[X]n is
a homogeneous system of parameters (h.s.o.p.) if and only if the ideal generated
by ϕ1, . . . , ϕn in K[X] contains all monomials of sufficiently high degree i.e. if it
satisfies the second condition of the above lemma.

The following result on h.s.o.p. is basic for us. For the proof see [St] (page 37, The
Cohen-Macauley property).

Theorem 4 If ϕ = (ϕ1, . . . , ϕn) ∈ K[X]n is a h.s.o.p. then for every k, 0 < k < n
and for every homogeneous polynomial ψ such that ψϕk+1 ∈ (ϕ1, . . . , ϕk)K[X] we
have ψ ∈ (ϕ1, . . . , ϕk)K[X].

3 Proof of Max Noether’s Fundamental Theorem

Let F1, . . . , Fn ∈ K[X] be polynomials (we do not assume that the system F1(X) =
· · · = Fn(X) = 0 is general!) in n variablesX = (X1, . . . , Xn) with coefficients in an
algebraically closed field K. Let G ∈ K[X]. We say that the sequence G,F1, . . . , Fn
satisfies Noether’s conditions at x ∈ Kn if there exists a polynomial Dx = Dx(X) ∈
K[X] such that Dx(x) ̸= 0 and DxG is in the ideal (F1, . . . , Fn)K[X].
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Lemma 2 Let G,F1, . . . , Fn ∈ K[X] be polynomials such that for every x ∈ Kn
the sequence G,F1, . . . , Fn satisfies Noether’s conditions at x. Then G ∈ (F1, . . . ,
Fn)K[X].

Proof. The system of polynomial equations Dx(X) = 0, x ∈ Kn has no solutions
in Kn. Therefore by Hilbert’s Nullstellensatz there exists a family of polynomials
Mx(X), x ∈ Kn such that ♯{x ∈ Kn : Mx(X) ̸= 0} < +∞ and

∑
x∈Kn

MxDx = 1 in

K[X]. Then we get G =

( ∑
x∈Kn

MxDx

)
G =

∑
x∈Kn

Mx(DxG) ∈ (F1, . . . , Fn)K[X].

Remark 1 If x ̸∈ V (F1, . . . , Fn) then for any polynomial G the sequence G,F1, . . . ,
Fn satisfies Noether’s conditions at x. It suffices to take Dx = Fi where Fi is such
that Fi(x) ̸= 0.

Lemma 3 Let F1, . . . , Fn ∈ K[X] be polynomials such that F1(x) = · · · = Fn(x) =
0 and det

(
∂Fi
∂Xj
(x)
)
̸= 0 at a point x = (x1, . . . , xn) ∈ Kn. Then there is a polyno-

mial Dx(X) ∈ K[X] such that (Xi − xi)Dx ∈ (F1, . . . , Fn)K[X] for i ∈ {1, . . . , n}
and Dx(x) ̸= 0.

Proof. Write Fi(X) = (X1 − x1)Di1(X) + · · · + (Xn − xn)Din(X) in K[X] for
i ∈ {1, . . . , n}. Differentiating and putting X = x we get Dij(x) = ∂Fi

∂Xj
(x). Let

Dx(X) := det(Dij(X)). Then Dx(x) ̸= 0 and by Cramer’s Rule (Xi− xi)Dx(X) ∈
(F1, . . . , Fn)K[X].

Proposition 1 Let F1, . . . , Fn ∈ K[X] be polynomials such that for every x ∈
V (F1, . . . , Fn) one has det

(
∂Fi
∂Xj
(x)
)
̸= 0. Let G ∈ K[X] be a polynomial such that

G(x) = 0 for all x ∈ V (F1, . . . , Fn). Then G ∈ (F1, . . . , Fn)K[X].

Proof. Let x = (x1, . . . , xn) ∈ Kn. If x ∈ V (F1, . . . , Fn) then G(X) =
n∑
i=1

(Xi −

xi)Gi(X). By Lemma 3 there is a polynomial Dx(X) ∈ K[X] such that (Xi −
xi)Dx(X) ∈ (F1, . . . , Fn)K[X]. Thus DxG ∈ (F1, . . . , Fn)K[X]. By Lemma 2 and
Remark 1 we get G ∈ (F1, . . . , Fn)K[X].
What remains to be proved in Noether’s Theorem is the bound on the degrees.

Proposition 2 Let F1, . . . , Fn ∈ K[X] be nonconstant polynomials such that the
homogeneous forms F+i ∈ K[X], i ∈ {1, . . . , n}, form a h.s.o.p. Then for every

G ∈ (F1, . . . , Fn)K[X] there exists A1, . . . , An ∈ K[X] such that G =
n∑
i=1

AiFi and

deg(AiFi) ¬ deg(G) for i ∈ {1, . . . , n}.
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Proof. Let X0 be a new variable and let G̃(X0, X), F̃i(X0, X), i ∈ {1, . . . , n},
be the homogenization of G(X) and Fi(X) for i ∈ {1, . . . , n}. Recall that
G̃(X0, X) = XdegG0 G

(
X1
X0
, . . . , XnX0

)
. Since G ∈ (F1, . . . , Fn)K[X] we get XN0 G̃ ∈

(F̃1, . . . , F̃n)K[X0, X] for an integer N > 0. It is easy to see that XN0 , F̃1, . . . ,
F̃n form a h.s.o.p. in K[X0, X]. By Theorem 4 XN0 is not a zero-divisor mod

(F̃1, . . . , F̃n) and we may write G̃ =
n∑
i=1

ψiF̃i where ψi are homogeneous polyno-

mials such that ψiF̃i is either 0 or of degree deg G̃. Let Ai(X) = ψi(1, X) for

i ∈ {1, . . . , n}. Putting X0 = 1 in the identity G̃ =
n∑
i=1

ψiF̃i we get G =
n∑
i=1

AiFi

and deg(AiFi) ¬ degG for i ∈ {1, . . . , n}.

Remark 2 With the assumptions of Proposition 2 one has
n
max
i=1
(degAiFi) = degG

and G+ =
∑
i∈I

A+i F
+
i where I = {i : deg(AiFi) = deg(G)}. In particular G+ ∈

(F+1 , . . . , F
+
n ).

Proof of Max Noether’s Fundamental Theorem. Max Noether’s Theorem
follows immediately from Proposition 1 and Proposition 2.

4 Proof of the Jacobi formula (cf. [Ne])

Lemma 4 Let F = (F1, . . . , Fn) ∈ K[X]n be polynomials with coefficients in a
field K. Then the set W = {x ∈ Kn : F (x) = 0 and JacF (x) ̸= 0} is finite.

Proof. By Lemma 3 for every x ∈W there is a polynomial Dx = Dx(X) such that
Dx(x) ̸= 0 and

(Xi − xi)Dx ∈ (F1, . . . , Fn) for i = 1, . . . , n.

Let us put Ux = {x̃ ∈ Kn : Dx(x̃) ̸= 0} for every x ∈ W . Then Ux ⊆ Kn is
a Zariski open subset of Kn and W ∩ Ux = {x}. Since K[X] is a noetherian ring

there exists a finite sequence x1, . . . , xs ∈W such that
∪
x∈W

Ux =
s∪
i=1

Uxi . Obviously

W = {x1, . . . , xs}.

Now, let F = (F1, . . . , Fn) ∈ K[X]n be a sequence of polynomials such that the set
V = V (F ) is finite. If R,S ∈ K[X] and S(x) ̸= 0 for all x ∈ V then we define the

trace of RS with respect to F by putting Tr F
(
R
S

)
:=
∑
x∈V

R(x)
S(x)
.



21

If the system of polynomial equations F = 0 has only simple solutions then

Tr F
(
H
JacF

)
=
∑
x∈V

H(x)
JacF (x)

is well-defined.

Lemma 5 Let F = (F1, . . . , Fn) ∈ K[X]n and G = (G1, . . . , Gn) ∈ K[X]n be such
that the systems of polynomial equations F = 0 and G = 0 have only simple zeroes.

Suppose that Gi =
n∑
j=1

AijFj in K[X]. Let A = det(Aij). Then Tr F
(
H
JacF

)
=

TrG
(
AH
JacG

)
.

Proof. Differentiating the identities

(1) Gi =
n∑
j=1

AijFj

we get

(2) JacG ≡ A JacF (mod (F1, . . . , Fn)K[X]).

From (1) and (2) we get that for all x ∈ Kn, F (x) = 0 if and only if G(x) = 0 and
A(x) ̸= 0. Indeed, if F (x) = 0 then G(x) = 0 by (1) and JacG(x) = A(x)JacF (x)
by (2). Thus JacG(x) ̸= 0 by the hypothesis that all the zeroes of the system G = 0
are simple, consequently we get A(x) ≠ 0.
On the other hand suppose that G(x) = 0 and A(x) ̸= 0. Then from (1) we get

0 =
n∑
j=1

Aij(x)Fj(x) for i ∈ {1, . . . , n} and Fj(x) = 0 by Cramer’s Rule. Summing

up we have V (F ) = V (G)\V (A) and JacG = AJacF on V (F ).
Now, we get

Tr F

(
H

JacF

)
=

∑
x∈V (F )

H(x)
JacF (x)

=

=
∑

x∈V (G)\V (A)

A(x)H(x)
JacG(x)

=
∑
x∈V (G)

A(x)H(x)
JacG(x)

= TrG

(
AH

JacG

)
.

Lemma 6 If G = (G1, . . . , Gn) ∈ K[X]n where Gi = Gi(Xi) ∈ K[Xi], i ∈
{1, . . . , n}, are nonconstant polynomials with simple zeroes then for every poly-

nomial H ∈ K[X], degH <

n∑
i=1

(degGi − 1) one has TrG
(
H
JacG

)
= 0.

Proof. By linearity of the trace we may assume that H = Xa11 · · ·Xann . It is

easy to see that TrG
(
H
JacG

)
= TrG1

(
X
a1
1
G′1

)
· · ·TrGn

(
Xann
G′n

)
. If degH =

n∑
i=1

ai <
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n∑
i=1

(degGi − 1) then ai < degGi − 1 for some i ∈ {1, . . . , n} and TrGi
(
X
ai
i

G′
i

)
= 0.

Consequently TrG
(
H
JacG

)
= 0 and we are done.

Proof of the Jacobi Formula. Let F = 0 be a general system of polynomial
equations. Then the set V = V (F ) is finite by Lemma 4 (and non-empty by Corol-
lary 1). Let Πi : Kn −→ K be the projection given by Πi(xi, . . . , xn) = xi and put
Gi(Xi) =

∏
xi∈Vi

(Xi − xi) ∈ K[Xi] where Vi = Πi(V (F )). Then Gi(Xi) is a polyno-

mial with simple zeroes vanishing on V . By Max Noether’s Fundamental Theorem
we may write Gi = Ai1F1 + · · · + AinFn ∈ K[X] with deg(AijFj) ¬ degGi for
i ∈ {1, . . . , n}. Let A = det(Aij). For any permutation (j1, . . . , jn) of (1, . . . , n)
we get deg(±A1j1 · · ·Anjn) ¬ (degG1 − degFj1) + · · · + (degGn − degFjn) =
n∑
i=1

(degGi − degFi) and consequently degA ¬
n∑
i=1

(degGi − degFi).

Let H ∈ K[X] be a polynomial such that degH <
n∑
i=1

(degFi − 1). Therefore

deg(AH) <
n∑
i=1

(degGi − degFi) +
n∑
i=1

(degFi − 1) =
n∑
i=1

(degGi − 1). Let G =

(G1, . . . , Gn). By Lemma 5 and Lemma 6 we get Tr F
(
H
JacF

)
= TrG

(
AH
JacG

)
= 0.

5 Poincaré series

Let ϕ1, . . . , ϕn ∈ K[X], X = (X1, . . . , Xn) be a sequence of homogeneous forms
of degrees d1, . . . , dn > 0. For any integer d ­ 0 we denote by K[X]d the linear
K-linear subspace of K[X] generated by monomials Xα11 · · ·Xαnn , α1+· · ·+αn = d.
For any integerm, 1 ¬ m ¬ n we put (ϕ1, . . . , ϕm)d theK-linear subspace ofK[X]d
consisted of the sums ψ1ϕ1 + · · ·+ ψmϕm where ψi are homogeneous polynomials
such that ψiϕi is either 0 or of degree d. We put, by convention, (ϕ1, . . . , ϕm)d = (0)d
if m = 0.

Theorem 5 Suppose that ϕ1, . . . , ϕn is a sequence of homogeneous parameters in
K[X]. Then for any integer m, 0 ¬ m ¬ n we have∑

d­0

(dimK K[X]d/(ϕ1, . . . , ϕm)d)T d =
∏m
i=1(1− T di)
(1− T )n

.

Remark 3 The formal power series which appears on the left side of the above
identity is named the Poincaré series of the graded algebra K[X]/(ϕ1, . . . , ϕm) ≃⊕
d­0

K[X]d/(ϕ1, . . . , ϕm)d.

To prove Theorem 5 we need two lemmas.
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Lemma 7
∑
d­0

(dimK K[X]d)T d =
1

(1− T )n
.

Proof. Let T1, . . . , Tn be new variables. Then∑
α1­0

Tα11

 · · ·
∑
αn­0

Tαnn

 = ∑
(α1,...,αn)∈Nn

Tα11 · · ·Tαnn .

Let T be a variable. Substituting T1 = · · · = Tn = T we get∑
α­0

Tα

n = ∑
(α1,...,αn)∈Nn

Tα1+···+αn =

=
∑
d­0

(
∑

α1+···+αn=d

1)T d =
∑
d­0

(dimK K[X]d)T d

and the Lemma follows since
∑
α­0

Tα =
1
1− T

in Z[T ].

Lemma 8

1. dimK K[X]d/(ϕ1, . . . , ϕm)d = dimK K[X]d/(ϕ1, . . . , ϕm−1)d for d < dm.

2. dimK K[X]d/(ϕ1, . . . , ϕm)d = dimK K[X]d/(ϕ1, . . . , ϕm−1)d −
dimK K[X]d−dm/(ϕ1, . . . , ϕm−1)d−dm for d ­ dm.

Proof. Property (1) is obvious since (ϕ1, . . . , ϕm)d = (ϕ1, . . . , ϕm−1)d for d < dm.
Let U be a K-linear space of finite dimension. Then for any subspaces W,V ⊆ U
such that W ⊆ V we have dimK U/W = dimK U/V + dimK V/W . Taking U =
K[X]d, V = (ϕ1, . . . , ϕm)d and V = (ϕ1, . . . , ϕm−1)d we get

dimK K[X]d/(ϕ1, . . . , ϕm−1)d = dimK K[X]d/(ϕ1, . . . , ϕm)d(3)

+ dimK(ϕ1, . . . , ϕm)d/(ϕ1, . . . , ϕm−1)d.

By Theorem 4 ϕm is not a zero-divisor mod (ϕ1, . . . , ϕm−1). Consequently the
mapping A −→ Aϕm where A ∈ K[X]d−dm induces an isomorphism of spaces
(ϕ1, . . . , ϕm)d/(ϕ1, . . . , ϕm−1)d and K[X]d−dm/(ϕ1, . . . , ϕm−1)d−dm and we get

(4) dimK(ϕ1, . . . , ϕm)d/(ϕ1, . . . , ϕm−1)d = dimK K[X]d−dm/(ϕ1, . . . , ϕm−1)d−dm .

From (3) and (4) we obtain Property (2) of Lemma.
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Now we can give

Proof of Theorem 5.
If m = 0 then the formula follows from Lemma 7. Suppose that m > 0 and that
Theorem 5 holds for m− 1. So we have

∑
d­0

(dimK K[X]d/(ϕ1, . . . , ϕm−1)d)T d =
(1− T d1) · · · (1− T dm−1)

(1− T )n
.

Using Lemma 8 we get

∑
d­0

(dimK K[X]d/(ϕ1, . . . , ϕm)d)T d =

=
∑
d­0

(dimK K[X]d/(ϕ1, . . . , ϕm−1)d)T d −

−
∑
d­dm

(dimK K[X]d−dm/(ϕ1, . . . , ϕm−1)d−dm)T
d =

=
(1− T d1) · · · (1− T dm−1)

(1− T )n
− (1− T

d1) · · · (1− T dm−1)
(1− T )n

T dm =

=
(1− T d1) · · · (1− T dm)

(1− T )n
.

Corollary 3 If ϕ1, . . . , ϕn is a system of homogeneous parameters in K[X] with
deg ϕi = di, then

dimK K[X]/(ϕ1, . . . , ϕn) = d1 · · · dn.

Proof. If m = n then by Theorem 5 we get

∑
d­0

dimK (K[X]d/(ϕ1, . . . , ϕn)d)T d =

= (1 + T + · · ·+ T d1−1) · · · (1 + T + · · ·+ T dn−1).(5)

Therefore dimK (K[X]d/(ϕ1, . . . , ϕn)d) = 0 for d >
∑n
i=1(di − 1). Substituting

T = 1 in (5) we get∑
d­0

dimK K[X]d/(ϕ1, . . . , ϕn)d = d1 · · · dn.

It suffices to observe that K[X]/(ϕ1, . . . , ϕn) and ⊕d­0K[X]d/(ϕ1, . . . , ϕn)d are
K-isomorphic.
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6 Proof of Bézout’s Theorem

We keep the notations of the Introduction. We consider a general system of po-
lynomial equations F = 0 and its set of solutions V (F ). We know that V (F ) is
non-empty (see Corollary 1) and finite (see Lemma 4). Let us denote I(F ) the ideal
generated by polynomials F1, . . . , Fn in the ring K[X]. To prove Bézout’s Theorem
we need

Lemma 9
♯V (F ) = dimK K[X]/(I(F )).

Proof. Let us consider the K-algebra K[V ] of polynomial functions on the set
V = V (F ). It is easy to see that the family {ex : x ∈ V } where ex(x) = 1 and
ex(x′) = 0 for x′ ∈ V \{x} is a K-linear basis of K[V ]. Thus dimK K[V ] = ♯V .
On the other hand the K-linear homomorphism σ : K[X] −→ K[V ] defined by
σ(P ) = P|V , has by Proposition 1 the kernel I(V ). Thus K[V ] and K[X]/I(F ) are
isomorphic and the lemma follows.

Lemma 10
dimK K[X]/(I(F )) = dimK K[X]/(I(F+)).

Proof. Let ϵ0 = 1, ϵ1, . . . , ϵD−1 be a monomial basis mod I(F+) (i.e. ϵ0, ϵ1, . . . ,
ϵD−1 are monomials such that the images of ϵ0, ϵ1, . . . , ϵD−1 in K[X]/I(F+) form a
K-linear basis). We will check that ϵ0, ϵ1, . . . , ϵD−1 is a linear basis mod I(F ). First,
let us prove that ϵ0, ϵ1, . . . , ϵD−1 are linearly independent mod I(F ). Suppose that
there is a non-zero sequence c0, . . . , cD−1 ∈ K such that c0ϵ0+ · · ·+ cD−1ϵD−1 ≡ 0
mod I(F ). Let I = {i : ci ̸= 0} and I0 = {i ∈ I : deg(

∑
j cjϵj) = deg ϵi}. Then,

by Remark 2 we get
∑
i∈I0 ciϵi ≡ 0 (mod I(F

+)) which contradicts the linear
independence of ϵi mod I(F+).

To check that every polynomial G is a linear combination of ϵi mod I(F ) we use
induction on degG. Let N > 0 be an integer and suppose that every polynomial
of degree strictly less than N is a linear combination of ϵi mod I(F ). Let G be
a polynomial of degree N . It suffices to check that G+ is a linear combination of
ϵ0, . . . , ϵD−1 mod I(F ). Since ϵ0, . . . , ϵD−1 form a linear basis mod I(F+) we may
write

G+ = ϕ1F+1 + · · ·+ ϕnF+n +
∑
i

ciϵi

where ϕi are homogeneous forms such that ϕiF+i is of degree degG
+ = N . Write

Fi = F+i +Ri, 1 ¬ i ¬ n, where degRi < degF
+
i . Then we get

G+ = ϕ1(F1 −R1) + · · ·+ ϕn(Fn −Rn) +
∑
i

ciϵi ≡

≡ ϕ1(−R1) + · · ·+ ϕn(−Rn) +
∑
i

ciϵi mod I(F )
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where deg(−ϕ1R1 − · · · − ϕnRn) < N and we are done.

Now we can prove Bézout’s Theorem:

Proof of Theorem 3. By Lemma 9, Lemma 10 and Corollary 3 we have

♯V (F ) = dimK K[X]/I(F ) = dimK K[X]/I(F+) =
n∏
i=1

degFi.

The reader will find more about Bézout’s Theorem in [LJ].
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[La] H. Laurent, L’Ēlimination, Scientia, Mars 1900.
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