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THE FUKUI INEQUALITY

FOR THE LOJASIEWICZ EXPONENT
OF NONDEGENERATE
CONVENIENT SINGULARITIES

Grzegorz Oleksik (Lodz)

Abstract

In the article we give a new elementary proof of the Fukui inequality [F]
for the Lojasiewicz exponent of nondegenerate singularities with convenient
Newton diagrams. In the proof we use only the Curve Selection Lemma.

1 Introduction

Let f: (C™,0) — (C,0) be a holomorphic function in an open neighborhood of
0 € C" and ), yn ay2” be the Taylor expansion of f at 0. We define I', (f) :=
conv{v+R" :a, # 0} C R" and call it the Newton diagram of f. Let u € R’ \ {0}.
Put {(u, T (f)) := inf{< u,v >: v € T (f)} and A(u, T (f)) := {v € T (f) <
u,v >=l(u, T (f))}. We say that S C R"™ is a face of T (f), if S = A(u,T'+(f))
for some uw € R’} \ {0}. The vector u is called the primitive vector of S. It is easy to
see that S is a closed and convex set and S C Fr(I'y (f)), where Fr(A) denotes the
boundary of A. One can prove that a face S C I'; (f) is compact if and only if all
coordinates of its primitive vector u are positive. We call the family of all compact
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faces of 'y (f) the Newton boundary of f and denote by I'(f). We denote by I'*(f)
the set of all compact k-dimensional faces of T'(f), kK = 0,...,n — 1. For every
compact face S € I'(f) we define quasihomogeneous polynomial fs:=3 . ca,z

We say that f is nondegenerate on the face S € T'(f), if the system of equations
ﬁ =...= gfs = 0 has no solution in (C*)", where C* = C\ {0}. We say
that fis nondeg"enemte in the Kouchnirenko’s sense (shortly nondegenerate ) if
it is nondegenerate on each face of I'(f). We say that f is a singularity if f is a
nonzero holomorphic function in some open neighborhood of the origin and f(0) =
0, Vf(0) =0, where Vf = (f.,,..., f. ). Wesay that f is an isolated singularity if
f is a singularity, which has an isolated critical point in the origin i.e. additionally

Vf(z) #0 for z # 0.
Let i € {1,...,n},n>2.

Definition 1.1 We say that S € T"~1(f) C R" is an exceptional face with respect
to the azis OX; if one of its vertices is at distance 1 to the axis OX; and another
vertices constitute (n — 2)-dimensional face which lies in one of the coordinate
hyperplane including the azis OX;.

0Xx;

v

0X,

=

0X,
Figure 1: An exceptional face S with respect to the axis OXj.
We say that S € T"~1(f) is an exceptional face of f if there existsi € {1,...,n}
such that S is an exceptional face with respect to the axis OX;. Denote by E; the

set of exceptional faces of f.

Definition 1.2 We say that the Newton diagram of f is convenient if it has
nonempty intersection with every coordinate axis.

Definition 1.3 We say that the Newton diagram of f is nearly convenient if its
distance to every coordinate azis doesn’t exceed 1.
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For every (n — 1)-dimensional compact face S € T'(f) we shall denote by
21(S), ..., 2,(S) coordinates of intersection of the hyperplane determined by face
S with the coordinate axes. We define m(S) := max{z1(S5),...,z,(S)}. It is easy

to see that

Usg

,i=1,...,n,

where u is a primitive vector of S. It is easy to check that the Newton diagram
[, (f) of an isolated singularity f is nearly convenient. So, "nearly convenience"
of the Newton diagram is a neccesary condition for f to be an isolated singularity.
For a singularity f such that T"(f) # ), we define

1 = S).
(1) mo(f) Seg{é}%mm( )
It is easy to see that in the case I'y (f) is convenient mq(f) is equal to the maximum

of coordinates of the points of the intersection of the Newton diagram of f and the
union of all axes.

Remark 1.4 A definition of mo(f) for all singularities ( even for T"1(f) =0),
can be found in [F|. In the case T"71(f) # 0 both definitions are equivalent.

Let f = (f1,.-.,fn): (C",0) — (C",0) be a holomorphic mapping having an
isolated zero at the origin. We define the number

(2) lo(f) :==inf{a € Ry: Ies0Fr>oV)2 <[l F (2)]| > Cll211*}

and call it the Zojasiewicz exponent of the mapping f. There are formulas and
estimations of the number lo(f) under some nondegeneracy conditions of f (see
[B], [BE1], [Lt], [Ph]).

Let f : (C",0) — (C,0) be an isolated singularity. We define a number
£o(f) :=1o(Vf) and call it the Lojasiewicz exponent of singularity f. Now we give
some important known properities of the Lojasiewicz exponent (see [L-JT]):

(a) £o(f) is a rational number.

(b) £o(f) = sup{ SHEHL 0 # 2(#) € C{t}", 2(0) = 0}

(¢) The infimum in the definition of the Yojasiewicz exponent is attained for
a = .£0(f)
(d) s(f) = [£o0(f)] + 1, where s(f) is the degree of C°-sufficiency of f [ChL].
Lenarcik gave in [L] the formula for the Lojasiewicz exponent for singularities

of two variables, nondegenerate in Kouchnirenko sense, in terms of its Newton
diagram (another formulas in general two-dimensional case see [CK1], [CK2]).
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Theorem 1.5 (|[L|) Let f: (C%,0) — (C,0) be an isolated nondegenerate singu-
larity and T*(f) \ Ey # 0. Then

(3) £o(f) = st g, m(S) —1

Remark 1.6 In two-dimensional case one can prove that for isolated singularities
such that TY(f)\ Ey =0, i.e. T'(f) consist of only exceptional segments, we have
Lo(f) = 1.

Let us pass to three dimensional case. Denote by AB the segment joining two
different points A, B € R3. We consider the following segments in R3:

It =(0,1,1)(k,0,0), I*¥ = (1,0,1)(0, k,0), I} = (1,1,0)(0,0, k), k € {2,3...}.

Put J :={IF:j=1,2,3,k=2,3,...}. Every segment I of this family intersects
exactly one coordinate axis in exactly one point. We denote by m(I) nonzero
coordinate of this point (equal to k). We have the following result.

Theorem 1.7 ([O1]) Let f : (C*,0) — (C,0) be an isolated and nondegenerate
singularity.

1° If T%(f) = 0 or L%(f) = Ey, then there exists excatly one segment I € J NT1(f)
and

£o(f) =m(I) 1.
20 If T2(f) \ Ef # 0, then

(4) Lo(f) < Serrgl(%c\Efm(S) -1

Now we pass to n-dimensional case. In multidimensional case we have an upper
bounds for £4(f), which was given by T. Fukui in 1991 without removing any
exceptional faces (see also [A],[O],|O1]). It is similar to the one given in Theorem
1.7 2° but we conjecture that in the inequality (5) after removing exceptional
faces there is the equality. It was proved to be true for quasihomogeneous surface
singularities in [KOP].

Theorem 1.8 ([F]) Let f: (C",0) — (C,0) be an isolated nondegenerate singu-
larity. Then
(5) Lo(f) <mo(f)—1.

The proof of the above theorem is technically intricate. We prove this theorem
in an elementary way in the case Newton diagram of f is convenient. Precisely we
prove, using only the Curve Selection Lemma, the following theorem.

Theorem 1.9 Let f : (C",0) — (C,0),n > 2, be an isolated nondegenerate
singularity such that T'(f) is convenient. Then

(6) £o(f) < Sermyf(f)m(S) -1

Remark 1.10 It is easy to see that if T(f) is convenient then T"~1(f) # 0.
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2 Proof of the Theorem 1.9

We give now a lemma used in the proof.

Lemma 2.1 Let f : (C*,0) — (C,0), n > 3, be a holomorphic function in an
open neighborhood of 0 € C" and g(z1,-..,2;) := f(z1,--,21,0,...,0) 0, k > 2.
Then

(7) T(g)={Sel(f): SC{zp41=... =2, =0}}.

PROOF.” C ”. Let S € I'(g), so S = A(u,[';(g)) for some u € (R, \ {0})*. Of
course S C T (f)N{zpy1 = ... =z, = 0}. Set v’ = (uy,...,ug, l(u, T (g)) +
1,...,l(u,I'1(g)) + 1) € R*. We show that S = A(u',['+(f)). By definition of u’
we have that [(u’',T';(f)) can be realised only for v € T (f) N {z}y1 = ... =y =
0}. But it is easy to check that 'y (f) N {z441 = ... = 2, = 0} = ' (g). So
we get (u!, Ty () = [(u,T (9)) and A(w',T () = A(u,T (g)). Reasumuming
S =AW, T4 (f)), it is in T(f).

"C”. Let SeT(f)iS C {ag41 = ... =x, = 0}. Then S = A(u,I'1(f)) for
some u € (R4 \ {0})" and as we observed above I'y (f) N {241 = ... = 2, =

0} =T1(g). So l(u,I'L(f)) =l(u',T'+(g)), where v’ = (uy,...,ug). It follows that
A, T4 (g9)) = A(u, T (f)) and S € T'(g). That concludes the proof. |

We can go to the proof of Theorem 1.9.
ProoOF. It is enough to show that

Vf ()] > Cla| ™o)1

for some C' > 0 in some neighborhood of 0 € C™. Suppose to the contrary that
this inequality isn’t true. Hence be the Curve Selection Lemma we get that there
exists an analytic curve ¢ : [0,e) — (C™,0) such that

(8) ord [V 0 ¢(t)] > ord |g (1))
Let J={j € {1,...n}: ¢; #0}. We have
¢;(t) = m?tqi + higher order terms, j € J

for some ¢; > 0, a:? # 0. Set ¢. = minjeyq; and let IV := T (f) N R/, where
R/ C R” is the linear subspace of R” spanned by the axis OX, j € J. Then vector
w = (ord ¢;)jes supports a compact face S of I'V and

(9) qi < mo(f),

where ZjeJ gjz; = d is the equation of the supporting hyperplane of face S.
Moreover by Lemma 2.1 S € T'(f). We get further

[, 00(t) = 4= in,, fL.(Y,...2%) + higher order terms, i =1,2,...n

2
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where ZU? := 1 for j ¢ J. There exists a variable z;, j € J, which appears in a
monomial of fs with non-zero coefficient. For these variables we have in,, f =
(fs)%,- Since f is nondegenerate on the face S, so among these variables there exists
a variable z;, such that (fS)'sz (z},...,x8) #0. Then 01rd(f;j0 0¢(t)) = d—gj, and

by inequality (8) we get d —¢q;, > ¢«(mo(f) — 1). Hence after easy transformations

we get
d .
— >mo(f) + ((Z;O—l>,
which contradicts inequality (9). It finishes the proof. [ ]

Example 2.2 Let f(21,22,23) := 230+ 25 + 25 + 2521 +2322. It is easy to check that
f is an isolated nondegenerate singularity. We also see that T'(f) is convenient and
consists of two faces S; and Sy but the face Sy = conv{(1,0,4),(0,1,4), (0,0,20)}
is an exceptional with respect to the azis OXs and mo(f) = m(S1) = 20(see Fig.

2).

0X,$20

v

3
OX,
Figure 2: The Newton boundary of singularity in Example 2.2

By Theorem 1.9
£o(f) <mo(f)—1=20-1=19,

and by Theorem 1.7 we get that

10 £ < S)—1=m(S2) —1=6—-1=5.
(10 o)< max  m(S) ~1=m(S)
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Hence the last estimation is better. It is easy to check that singularity g := f — 23°

is an isolated and weighted with weights 3,3,6. Hence by Theorem 1 of paper [KOP]
we have
£o(9) = max{3,3,6} — 1 =5.

Since ord(Vf — Vg) > £o(g), then by Lemma 1.4 in [P] we get that £o(f) =
£0(g) = 5. Hence estimation obtained by Theorem 1.7 is optimal.
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NIEROWNOSC FUKUI DLA WYKEADNIKA LOJASIEWICZA
NIEZDEGENEROWANYCH DOGODNYCH OSOBLIWOSCI

Streszczenie. W pracy podajemy nowy elementarny dowod nieréwnosci Fukui [F]

na wykladnik Fojasiewicza osobliwosci niezdegenerowanych o dogodnych diagra-
mach Newtona. W tym dowodzie korzystamy tylko z Lematu o Wyborze Krzywej.
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