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The talk is based on

Biatas-Ciez L., Calvi J.-P., A. Kowalska, Polynomial inequalities on
certain algebraic hypersurfaces, J MATH ANAL APPL vol. 459
(2018), 822-838.

We study extensions of polynomial inequalities (Markov inequality,
Schur inequality) and some approximation problems (Plesniak
Theorem, Admissible meshes) to compact subsets of a
hypersurface of the form

V(f) ={f(z.,y) = 0,(z,y) = (z1,..., 2n,y) € CV*},

where f(z,y) = y¥ — s(z), k > 1 and s is a non constant
polynomial in P(CN) and we use y instead of zy1 to emphasize
the particular role played by this variable.

N

A. Kowalska (UP) Nieréwnosci wielomianowe na zbiorach algebraicznych w C



The talk is based on

Biatas-Ciez L., Calvi J.-P., A. Kowalska, Polynomial inequalities on
certain algebraic hypersurfaces, J MATH ANAL APPL vol. 459
(2018), 822-838.

We study extensions of polynomial inequalities (Markov inequality,
Schur inequality) and some approximation problems (Plesniak
Theorem, Admissible meshes) to compact subsets of a
hypersurface of the form

V(f) ={f(z.,y) = 0,(z,y) = (z1,..., 2n,y) € CV*},

where f(z,y) = y¥ — s(z), k > 1 and s is a non constant
polynomial in P(CN) and we use y instead of zy1 to emphasize
the particular role played by this variable.

By P(CN) (resp. P4(CN)) we denote the space of all polynomials
of N complex variables with coefficients in C (resp. of total degree
at most d). Sometimes, however, it is more convenient to write
P(z1,...,2n) or P(2), z=(z1,. .., zn) for P(CN) and likewise for
the subspaces of polynomials of given degree.
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We use standard multinomial notation. In particular, for
a=(a1,...,ay) € NV we have [a| = a3 + --- + ap,
2% =z ... Zy¥ and D* = 9l°l /(92" ... 9z3N).

Definition (Markov set and Markov inequality)

A compact set E C CV is said to be a Markov set if there exist
constants M, m > 0 such that

10%plle < M*!(deg p)™*!|Iplle, peP(CY), aecNV. (1)

Such inequality is called a Markov inequality for E.
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We use standard multinomial notation. In particular, for
a=(a1,...,ay) € NV we have [a| = a3 + --- + ap,
z2% =z ... zy" and D = 9lol /(921 ... OzyN).

Definition (Markov set and Markov inequality)

A compact set E C CV is said to be a Markov set if there exist
constants M, m > 0 such that

10%plle < M*!(deg p)™*!|Iplle, peP(CY), aecNV. (1)

Such inequality is called a Markov inequality for E.

By iteration, inequality (1) is satisfied for all « once it is satisfied
for all |«| of length one.
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We use standard multinomial notation. In particular, for
a=(a1,...,ay) € NV we have [a| = a3 + --- + ap,
z2% =z ... zy" and D = 9lol /(921 ... OzyN).

Definition (Markov set and Markov inequality)

A compact set E C CV is said to be a Markov set if there exist
constants M, m > 0 such that

10%plle < M*!(deg p)™*!|Iplle, peP(CY), aecNV. (1)

Such inequality is called a Markov inequality for E.

By iteration, inequality (1) is satisfied for all « once it is satisfied
for all |«| of length one.

Considerable work has been done in the last decades about the
problem of finding (geometrical) conditions ensuring that a given
compact is a Markov set and that of finding (near) optimal
constants in Markov inequalities for a given compact set.
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The following properties immediately follow from the definition.

@ A compact set £ C CV is a Markov set if and only if so is
A(E) where A is any affine automorphism of CV.
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The following properties immediately follow from the definition.

@ A compact set £ C CV is a Markov set if and only if so is
A(E) where A is any affine automorphism of CV.

@ A finite union of Markov sets is a Markov set.
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The following properties immediately follow from the definition.

@ A compact set £ C CV is a Markov set if and only if so is
A(E) where A is any affine automorphism of CV.

@ A finite union of Markov sets is a Markov set.

© The Cartesian product of two Markov sets E; in CVi, j = 1,2
is a Markov set in CM+Nz,
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The following properties immediately follow from the definition.

@ A compact set £ C CV is a Markov set if and only if so is
A(E) where A is any affine automorphism of CV.

@ A finite union of Markov sets is a Markov set.

© The Cartesian product of two Markov sets E; in CVi, j = 1,2
is a Markov set in CN1N2,

Q A Markov set E in CN is P(CN)-determining (for short
determining) that is, p € P(CN) and ||p||g = 0 implies p = 0.
(Otherwise, (1) cannot hold for a polynomial p of minimal
positive degree which vanishes on E.)
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Theorem (Plesniak Theorem)

A determining compact set E in CN is a Markov set if and only if
there exist positive constants M and m such that

Iplle, < Mllplle, pePa(CY), neN (2)

where E, = {z € CV : dist(z, E) < 1/n™}. The constant m
coincides with the exponent m in (1).
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Theorem (Plesniak Theorem)

A determining compact set E in CN is a Markov set if and only if
there exist positive constants M and m such that

Iplle, < Mllplle, pePa(CY), neN (2)

where E, = {z € CV : dist(z, E) < 1/n™}. The constant m
coincides with the exponent m in (1).

The inequality (2) is called a Plesniak Inequality.
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Another important inequality related to Markov inequality is
concerned with the problem of bounding a factor of a polynomial
in terms of the polynomial itself.

Definition (Division set and division inequality)

A determining compact set E in CV is said to be a division set if
for all non zero polynomial g, we have

Iplle < D(E,q,n)llpalle,  p € Pa(C), (3)

where D(E, g, n) grows polynomially in n.
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Another important inequality related to Markov inequality is
concerned with the problem of bounding a factor of a polynomial
in terms of the polynomial itself.

Definition (Division set and division inequality)

A determining compact set E in CV is said to be a division set if
for all non zero polynomial g, we have

Iplle < D(E,q,n)llpalle,  p € Pa(C), (3)

where D(E, g, n) grows polynomially in n.

The most classical division inequality, which holds for E = [-1,1],
is due to Schur and states that

Ipll=1,1 < (L +degp)llpalli—1,11, a(x) =x, peP(R).

For this reason division inequalities are sometimes called Schur
inequalities.
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It is shown by Leokadia Bialas-Ciez in 1999 that, in the
one-dimensional case, Markov sets and division sets coincide.
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It is shown by Leokadia Bialas-Ciez in 1999 that, in the
one-dimensional case, Markov sets and division sets coincide.
Now, we have the following generalization in CV

Let E be a compact set in CN satisfying Markov inequality (1) and
g € P(CN) a non zero polynomial of degree d. There exists a
positive constant C depending only on q and E such that

lplle < C(d +n)*|lpqlle, p € Pa(C"). (4)
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We will need a slight extension of this theorem to the case of
polynomial vectors.
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We will need a slight extension of this theorem to the case of
polynomial vectors.

Let P = (p1,...,p) " is a column vector whose entries p; are
polynomials in P(CN) and A = (g;) is a / x | matrix whose entries
g;; are elements of P(CV). We denote

IPlle = max{llpille : i = 1,.... 1} and A = S0 [ICol;(A)]le
where Col;(A) denotes the j-th column of A.
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We will need a slight extension of this theorem to the case of
polynomial vectors.

Let P = (p1,...,pr)" is a column vector whose entries p; are
polynomials in P(CN) and A = (g;) is a / x | matrix whose entries
g;; are elements of P(CV). We denote

IPlle = max{llpille : i = 1,.... 1} and A = S0 [ICol;(A)]le
where Col;(A) denotes the j-th column of A.

)T

Corollary

Let E ¢ CN be a compact set in CN satisfying Markov inequality
(1) and A be a fixed polynomial matrix as above whose
determinant is a non zero polynomial of degree r. Then there
exists a positive constant ¢ depending only on A and E such that

IPle < c(r+n)™|AP|e, P=(p1,-...p)7, pi € Pa(C).
(5)

v
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We work with

V(f) ={f(z,y) =0,(z,y) = (z1,..., 2N, y) € CNT1},

where f(z,y) = y*¥ — s(z), k > 1 and s is a non constant
polynomial in P(CN)
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We work with

V(f) ={f(z,y) =0,(z,y) = (z1,..., 2N, y) € CNT1},

where f(z,y) = y*¥ — s(z), k > 1 and s is a non constant
polynomial in P(CN)

Baran M., A.K., Sets with the Bernstein and generalized Markov
properties, Ann. Pol. Math. 111.3(2014), 259-270.
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We work with

V(f) ={f(z,y) =0,(z,y) = (z1,..., 2N, y) € CNT1},

where f(z,y) = y*¥ — s(z), k > 1 and s is a non constant
polynomial in P(CN)

Baran M., A.K., Sets with the Bernstein and generalized Markov
properties, Ann. Pol. Math. 111.3(2014), 259-270.

In this paper we consider Bernstein property and generalizations of
Markov inequality and Plesniak condition for compact symetric
subsets of algebraic sets of the form

V= {(},XN) eRV: X = Q(?)}»

where x € RN_]', Qe R[Xl, c. 7XN—1] such that
Q([0,+¢)) # 0 and deg Q < d.
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Open problem 1 from [M.Baran,A.K. 2014]: Does a generalized
Markov property hold for some compact subsets of {x3 + y3 =1}
and {x* +y* =1}
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Open problem 1 from [M.Baran,A.K. 2014]: Does a generalized
Markov property hold for some compact subsets of {x3 + y3 =1}
and {x* +y* =1}

We work with

V(f) ={f(z,y) =0,(z,y) = (z1,...,zn,y) € CNT1},

where f(z,y) = y¥ —s(z), k > 1 and s is a non constant
polynomial in P(CN)
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Open problem 1 from [M.Baran,A.K. 2014]: Does a generalized
Markov property hold for some compact subsets of {x3 + y3 =1}
and {x* +y* =1}

We work with

V(f) ={f(z,y) =0,(z,y) = (z1,...,zn,y) € CNT1},

where f(z,y) = y¥ —s(z), k > 1 and s is a non constant
polynomial in P(CN)

and the group Uy of the k-th roots of unity in C. Any generator of
Uy is called a primitive k-th root of unity.
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Open problem 1 from [M.Baran,A.K. 2014]: Does a generalized
Markov property hold for some compact subsets of {x3 + y3 =1}
and {x* +y* =1}

We work with

V(f) ={f(z,y) =0,(z,y) = (z1,...,zn,y) € CNT1},

where f(z,y) = y¥ —s(z), k > 1 and s is a non constant
polynomial in P(CN)

and the group Uy of the k-th roots of unity in C. Any generator of
Uy is called a primitive k-th root of unity.

A basic but fundamental observation is that f is invariant under
the group Uy, that is,

f(z,wy) = f(z,y) for any w € Uy.
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Open problem 1 from [M.Baran,A.K. 2014]: Does a generalized
Markov property hold for some compact subsets of {x3 + y3 =1}
and {x* +y* =1}

We work with

V(f) ={f(z,y) =0,(z,y) = (z1,...,zn,y) € CNT1},

where f(z,y) = y¥ —s(z), k > 1 and s is a non constant
polynomial in P(CN)

and the group Uy of the k-th roots of unity in C. Any generator of
Uy is called a primitive k-th root of unity.

A basic but fundamental observation is that f is invariant under
the group Uy, that is,

f(z,wy) = f(z,y) for any w € Uy.

In particular (z,y) € V = (z,wy) € V.
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Recall that the ring of polynomials on V = V/(f) is
P(V)={pv.p € P(z.y)}.

We have a very simple algebraic structure for P(V) as shown by
the following lemma and this is one of the two key technical points
used in the sequel.

We have

P(z) ® Pr-1(y) = P(V).
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Recall that the ring of polynomials on V = V/(f) is

P(V)={pv,p € P(z.y)}.

We have a very simple algebraic structure for P(V) as shown by
the following lemma and this is one of the two key technical points
used in the sequel.

We have

P(z) @ Pr—1(y) ~ P(V).

As usual, P(z) ® Pk_1(y) denotes the subspace of P(z, y) formed
of all polynomials of the form

=
[y

ci(z)y" with ¢; € P(2).

Il
o
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A specific isomorphism
¢ P(z) @ Prk_1(y) — P(V)

is merely the restriction to V/, that is ®(p) = pj, while @~ is the
unique linear map on P (V) obtained by substituting s(z) for y,
that is

O~ ((z%y ™)) = 2%59(2)y"
where m=gqgk+r, re{0,...,k—1}.
The linear map ® above is one-to-one. Thus, on V/, any
polynomial coincides with a polynomial from P(z) ® Px_1(y).
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We need to suitably define the degree of a polynomial on V. The
natural definition (which works for any algebraic set) is as follows.

Definition

The degree deg, p of a polynomial p € P(V) is defined as

degy p = min {deg P : P, = p}.

A. Kowalska (UP)
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We need to suitably define the degree of a polynomial on V. The
natural definition (which works for any algebraic set) is as follows.

Definition

The degree deg, p of a polynomial p € P(V) is defined as

degy p = min {deg P : P, = p}.

In particular, for any P € P(z,y), we have

degy Py < deg P.
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For any p € P(V) we have

d
degy p < deg ®*(p) < max {1, %} degy p
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For any p € P(V) we have

d
degy p < deg ®*(p) < max {1, efs} degy p

Ifp(z,y) = Z;(;ol p,-(z)yi € P(z) ® Px—1(y) then for any
i=0,...,k—1and(z,y) € CN*L,

pi(2)y’| < max |p(z, wy)|.
wely
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To explain the way we will use this result we first need the
following definition.

Definition

A compact set E in V is said to be Uy-invariant if (z,y) € E
implies (z, wy) € E for any w € Uy.
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To explain the way we will use this result we first need the
following definition.

Definition

A compact set E in V is said to be Uy-invariant if (z,y) € E
implies (z, wy) € E for any w € Uy.

The whole algebraic set V' is Ug-invariant.
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To explain the way we will use this result we first need the
following definition.

Definition

A compact set E in V is said to be Uy-invariant if (z,y) € E
implies (z, wy) € E for any w € Uk.

The whole algebraic set V' is Ug-invariant.

Lemma

Let E be a Uy-invariant compact subset of V. If

k—1

p(z,y) = pi(2)y’ € P(2) ® Pra(y)
i=0

then

lpi(2)y'lle < llplle. i=0,....k—1.
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One can find similar result for circled sets

Lemma

Let d € N and E C CN be a compact, circled set, i.e. (z,w) € E
implies (e''z, e®w) € E for all real t. Then for any polynomial
pd = hg + hg_1 + ...+ ho of degree d written as a sum of
homogeneous polynomials, we have | hj||g < ||pq||g for
j=0,...,d.
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One can find similar result for circled sets

Lemma

Let d € N and E C CN be a compact, circled set, i.e. (z,w) € E
implies (e''z, e®w) € E for all real t. Then for any polynomial
pd = hg + hg_1 + ...+ ho of degree d written as a sum of
homogeneous polynomials, we have | hj||g < ||pq||g for
j=0,...,d.

4

In the general case, when Z is the set of zeros of a polynomial g in
N + 1 complex variables, one can ask about a condition which
implies a similar estimate for compact subsets of Z.

What about other classes of compact subsets of algebraic varieties
with some symmetries which gives us the similar estimation?
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Given a compact set E in V = {f = 0} as in the previous section,
we set

plY g :=inf{|D*P|lg : Py = p,P € P(z,y)}, peP(V).
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Given a compact set E in V = {f = 0} as in the previous section,
we set

plY g :=inf{|D*P|lg : Py = p,P € P(z,y)}, peP(V).

Definition (Markov set and Markov inequality on V)

A compact set E C V is said to be a V-Markov set if there exist
constants M, m > 0 such that

plY £ < Ml(degy p)™plle, peP(V), aeN'. (6)

This inequality is called a Markov inequality for E in V or a
V-Markov inequality.
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Given a compact set E in V = {f = 0} as in the previous section,
we set

plY g :=inf{|D*P|lg : Py = p,P € P(z,y)}, peP(V).

Definition (Markov set and Markov inequality on V)

A compact set E C V is said to be a V-Markov set if there exist
constants M, m > 0 such that

plY £ < Ml(degy p)™plle, peP(V), aeN'. (6)

This inequality is called a Markov inequality for E in V or a
V-Markov inequality.

v

This definition raises evident difficulties as it seems complicated to
estimate |p|Y ..
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In fact, we often prove a much stronger inequality in which |p|xE
is replaced by its upper bound ||[D*®~1(p)||e.
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In fact, we often prove a much stronger inequality in which |p|0‘{7E
is replaced by its upper bound ||[D*®~1(p)||g. Another obvious
difficultly is that, in contrast with the ordinary case, it is not
possible to simply iterate inequality (6) from the case |a| = n to
o =n+1.
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In fact, we often prove a much stronger inequality in which |p|0‘{7E
is replaced by its upper bound ||[D*®~1(p)||g. Another obvious
difficultly is that, in contrast with the ordinary case, it is not
possible to simply iterate inequality (6) from the case |a| = n to
o =n+1.

The isomorphism P(z) ® Px_1(y) =~ P(V) next suggests the
following definition.
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In fact, we often prove a much stronger inequality in which |p|0‘{7E
is replaced by its upper bound ||[D*®~1(p)||g. Another obvious
difficultly is that, in contrast with the ordinary case, it is not
possible to simply iterate inequality (6) from the case |a| = n to
o =n+1.

The isomorphism P(z) ® Px_1(y) =~ P(V) next suggests the
following definition.

To say that W subspace of P(CN*1) is invariant under derivation
simply means that p € W implies D%p € W for all « and, of
course, it suffices to check the property for |a| = 1. The space
P(z) ® Pr—1(y) is obviously invariant by derivation.
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Definition (Markov set and Markov inequality on W)

Let W be an infinite dimensional subspace of P(CN*1) which is
invariant under derivation. A compact set E ¢ CN*1 is said to be
a W-Markov set if there exist M, m > 0 such that

1D0%plle < M*l(deg )" [Iple, pEeW, aeN'. (7)

This inequality is called a W-Markov inequality for E.
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Definition (Markov set and Markov inequality on W)

Let W be an infinite dimensional subspace of P(CN*1) which is
invariant under derivation. A compact set E ¢ CN*1 is said to be
a W-Markov set if there exist M, m > 0 such that

1D0%plle < M*l(deg )" [Iple, pEeW, aeN'. (7)

This inequality is called a W-Markov inequality for E.

The constant m in (6) and in (7) is called the exponent of the
respective inequalities.
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Definition (Markov set and Markov inequality on W)

Let W be an infinite dimensional subspace of P(CN*1) which is
invariant under derivation. A compact set E ¢ CN*1 is said to be
a W-Markov set if there exist M, m > 0 such that

1D0%plle < M*l(deg )" [Iple, pEeW, aeN'. (7)

This inequality is called a W-Markov inequality for E.

The constant m in (6) and in (7) is called the exponent of the
respective inequalities.

Let E be a compact subset of V and W = P(z) @ Px_1(y). If E is
a W-Markov set then E is also a V-Markov set. The exponent m
in the W-Markov inequality may be used in the V -Markov
inequality as well.
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From now on, we denote by 7 the projection from V ¢ CN*1 onto
the space CV, i.e. m(z,y) = z for (z,y) € V. In particular, if E is
a compact subset of V then

7(E)={z € CV:(z,y) € E for some y € C}.

Theorem

Let E be a Uk-invariant compact set in V' and
W = P(z) ® Pxk—1(y). Then E is a W-Markov set with
W = P(z) ® Px_1(y) if and only if m(E) is a Markov set in CN. In

particular, E is a VV-Markov set with exponent m (1 I @) as

soon as m(E) is a Markov set with exponent m in CN.

N
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Let V = {y® =22 -1} C C? and D be the (closed) unit disc in C.
The compact set E = {(z,y) € V : y € D} is a V-Markov set.

N
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Let V = {y® =22 -1} C C? and D be the (closed) unit disc in C.
The compact set E = {(z,y) € V : y € D} is a V-Markov set.

We have 7(E) = {z € C : 22 — 1 € D} which is the lemniscate of
Bernoulli (with its interior) and E is Us-invariant. By a result of
Szegd and Bernstein's pointwise estimate we can show that 7(E)
is a Markov set with exponent m = 1. Therefore, the set E is a
W-Markov set and the exponent can be taken as

1+2-(2/3)=17/3.
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A compact set E in V is Py-determining if for all p € P(z,y),
p=0on E impliesp=0on V.
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A compact set E in V is Py-determining if for all p € P(z,y),
p=0on E impliesp=0on V.

Definition (Division set and division inequality on V)

A Py-determining compact subset E in V' is said to be a
V-division set if, for any non constant polynomial g on V/, there
exists a sequence Dy/(E, g, n) in RT which grows polynomially in n
such that

||P||E < DV(E,C], n)HquE’ deng <n.

Any specific polynomial bound for Dy/(E, g, n) is called a
V -division inequality.

N
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A compact set E in V is Py-determining if for all p € P(z,y),
p=0on E impliesp=0on V.

Definition (Division set and division inequality on V)

A Py-determining compact subset E in V' is said to be a
V-division set if, for any non constant polynomial g on V/, there
exists a sequence Dy/(E, g, n) in RT which grows polynomially in n
such that

||P||E < DV(E,C], n)HquE’ deng <n.

Any specific polynomial bound for Dy/(E, g, n) is called a
V -division inequality.

| A

Theorem

Assume that the polynomial f defining V is irreducible and let E
be a Ug-invariant compact set in V. If 7(E) is a Markov set then
E is a V-division set.

N
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This is a particular case of the following result which does not
require f to be irreducible.
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This is a particular case of the following result which does not
require f to be irreducible.

Theorem

Let E be a Ug-invariant, Py -determining compact set in V' such
that w(E) is a Markov set in CN and q be a non constant
polynomial in P(z,y). There exists a sequence Dy (E, q, n) that
grows polynomially in n such that

Iplle < Dv(E, q,n)llpqlle for degy p < n

if and only if q and f are relatively prime.
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Finally, we can advertise that our results allow us to construct an
admissible mesh on Ug-invariant compact subset of V.

Definition
Let E be a compact set in V. A sequence of sets (Ap)nen in E is
called an admissible mesh if:

© the cardinality of A, grows polynomially in n as n — oo,

@ there exist a positive constant C (independent of n) such that
for all P € P(V),

IPle < ClIPl|.4, if degy P <n. (8)

v
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We denote by m(K) the projection of the set K ¢ CN*! on the
space CN i.e.

m(K) == {zeCN : (z,y) € K forsome y € C}. (9)

Proposition

If E is a Uy-invariant compact set in V' and (Ap),cy is an
admissible mesh for w(E) then 7= ((A,)nen) is an admissible
mesh for E.
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Our results concern algebraic hypersurfaces of the form
V= {z,l\‘,+1 =s(z1,...,2zy)} c CVTL (10)

where s is a non constant polynomial of N variables. We supposed
that our results can be generalized by using similar approach to
other classes of algebraic varieties.
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Thank you for your attention!
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