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BIFURCATION VALUES

AND TRAJECTORIES OF GRADIENT FIELDS

Michal Klepczarek * (£6dz)

Let f : R® — R be a semialgebraic analytic function and A be a bifurcation
value of f. We prove that there exists a trajectory z : (o, 8) — R™ of the gradient
field of f such that lim; . f(z(¢)) = A or limy_,g f(x(t)) = A

INTRODUCTION

In the 1960s René Thom [Thl] gave conditions ensuring the local topological
triviality of smooth mappings. It turns out that for every polynomial f: C* — C
there exists a finite subset ¥ C C such that the function f is a locally trivial fi-
bration over C\ ¥. The smallest such subset of C is called the set of bifurcation
values of the function f. In the case of complex polynomials with isolated singula-
rities at infinity, due to the works of Pham and Parusifiski (see [Ph] and [Pal), it
is well known that the set of bifurcation values of f consists of critical values of f
and regular values at which the Malgrange condition fails. Many mathematicians
tried to characterize the bifurcation set in more general case introducing different
conditions such as: quasi-tameness, Malgrange condition, M-tameness.
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Usually when we want to construct a trivialization of f over a neighbourhood
of a regular value ¢ we use the flow of V f. Therefore, it is important to study the
properties of possible trajectories of Vf. It is well known that any bounded tra-
jectory x of an analytic function f has a limit point. Moreover, Thom conjectured
that such a trajectory has a tangent at its limit point. This claim is known as the
Gradient Conjecture and was solved by Kurdyka, Parusinski and Mostowski (see
[KMP] and [KM] ). Using similar techniques a related theorem on the behaviour
of the incisors at infinity was proved by Grandjean ([Gr]). He showed that if z is
a bounded trajectory of the gradient field of a semialgebraic function f of class
C?, then there exists a limit z(¢)/||z(t)||. In this work Grandjean also shows that
if f(z(t)) — X then X is the asymptotic critical value of the function f.

In this paper we investigate an opposite question in some way. We prove that
for each bifurcation value A of a semialgebraic analytic function (i.e Nash function)
f:R™ — R we can find a trajectory = : (a, ) — R™ such that

lim fox(t)=XA VvV lim foa(t) =\,
t—a t—p3
i.e. the set of bifurcation values of f is contained in the set of values A\ satisfying

the above condition. The examples show that this set is substantially smaller than
the set of asymptotic critical values.

In the proof, we use the flow of V f and some properties of differential equations.

1. PRELIMINARIES

Denote by F : G — R"™ a mapping defined on an open subset G C R**! and
consider the following system of differential equations
(1) ¥ =F(t,x)
where x = (21, ..., 2,). Assuming that through each point (
exactly one integral solution v(7,7n) : I(r,n) — R"™ of (1
interval I(7,7n), we can define a set

V=A{(r.nt) eRxR" xR;(r,n) € G,t € I(7,n)}

and a mapping ® : V — R” by

@(T, n, t) - 7(7—7 7’) (t) (Tv m, t) eV
The mapping ® is called the general solution of system (1).
It is well known that the general solution of system (1) is of the same class as
the mapping F (see for example [Na]). Namely we have

7,1) € G there passes
) defined on an open

Theorem 1. class of solution If the mapping F is of class C™ (C*°, analitic) than
the general solution of system (1) exists and is also of class C™ (C*°, analitic).

In this paper we consider a particular type of system (1) where G =R x W for
some open set W C R™ and F(t,z) = Vf(z) for (¢,2) € G. Any integral solution
of system

(2) 2 = Vi)
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we call a trajectory of the field gradient field of f (field V f in short).
An autonomy of the system (2) allows arbitrary time movements.

Proposition 2. time movement Let f : W — R be a function of class C? and
®:V — W be a general solution of system (2). For any point (t1,£,t2) € V and
any to € R there is (t1 — to,&,t2 — to) €V and

(I)(tlagatQ) = ®<t1 - t0a§7t2 - to)

In particular,
(3) (b(tlagth) :é(oagatZ_tl) :(I)(tl_tQagaO)'

Proof. Let v = v(¢1,&) : (o, 8) — W be the trajectory of the V f field such that
~(t1) = £. Then a mapping v* : (a — o, 8 — tg) — W defined as

Y (t) =(t +to)
is the only trajectory that passes through (¢t — to,&). Indeed,

Y (t1 —to) = y(t1 —to +to) = y(t1) = ¢,
(V)'(#) =7t +t0) = VI(r(t +t0)) = V(v (1)) for t € (a—to,—to)
Therefore,
D(t1,€,t2) = Y(t2) = y(t2 — to + to) = y(t2 — to) = P(tx — to, &, t2 — to),
which completes the proof. ([

2. MAIN RESULT

Let W C R™, U C R be open sets. We say that the function f : W — U of
class C*° is a C'* fibration over U if there exists y € U and a mapping ¥; : W —
f~1(y) such that the mapping

U= (0, f): W3 (Vi(2), f(z) € fHy) xU
is a diffeomorphism of class C°*°. The mapping WV is called a trivialisation f of class
C*> over U.

We say that A € R is a typical value of a function f : W — R if f is a O
fibration over some neighbourhood of A. Any number X that is not a typical value
of f is called a bifurcation value of f. By B(f) we denote the set of all bifurcation
values of f.

It is well known that for semialgebraic function f : R® — R of class C* we have
B(f) Cc K(f), where

K(f) ={x e R: Jpcrn f(@r) = AN (L4 [l DIV f (zr)]| — O}
is the set of generalized critical values of f. Clearly K(f) = Ko(f)U K (f), where
Koo(f) ={A e R: Ty e [|znll = 00 A far) = AN (1 + [lzx DIV f ()] — 0}

is called the set of asymptotic critical values of f and Ky(f) is the set of critical
values of f. In our case f : R® — R is an analytic semialgebraic function and
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the set K (f) is finite (see for example [KOS]). Moreover, values of f along each
trajectory of the gradient field converge to a certain critical value. More precisely,

Theorem 3. konceladuja w K(f) Let f : R® — R be an analytic semilgebraic
function. For each trajectory v : (o, 8) — R™ of the gradient field we have

lim(fom(®) € K(f) A lm(for)(t) € K(J).

If the set 7|(q,s) is unbounded for some § € (a, ) the proof of the first equation
can be found in [Gr]. In the case where (4,4 is bounded we can use Lojasiewicz
Theorem [Lo] to show that lim; o f(7(¢)) = f(z1) € Ko(f) for some z; € R™.

Our aim is to prove the following theorem:

Theorem 4. tw eng Let f : R™ — R be an analytic semialgebraic function and Xy
be a bifurcation value of f. There exists a trajectory v : (o, 3) — R™ of the field
Vf such that

lm (foy)(t) =2 V tli_rgj(f °Y)(t) = Ao.

Unfortunately the implication in the above theorem cannot be reversed.
If we denote by A(f) the set of all A for which there exists trajectory
v : (a,8) — R™ of the field Vf such that lim;.o(f o 7)(t) = Ao
or limy_,g(f o v)(t) = Ao, then we have B(f) C A(f) € K(f). We will illustra-
te this fact with examples.

Example 1. Let f(z,y) = ¢, (v,y) € R2.
Obviously B(f) =0 and K(f) = 0 and the trajectories are of the form

1 Cs
1 _ L o
701,02(t)7(01’ 3t+02) t e ( o0, 3 )7
1 Co
2 _ _ _
Ve, () = (C1, 3t—|—02) te( 3 ,00),
7%1 (t) = (C1,0) t € (—00,00).

Consequently @ = B(f) C A(f) = K(f) = {0}.

Example 2. Let f(z,y) = 13542, (z,y) € R*. Consider the system (z’,y') =

Vf(x,y), i.e. the following system
2zy 1

4 ! = —-— 4 _ -
@) v (14 22)2”7 LA
and let v = (75,7y) : (a, 8) — R? be a trajectory of field Vf.

If there exists to € (o, 3) such that v, (to) = 0, then v(t) = (0,¢) for t € R and
lim¢ oo f(7(2)) = 0.

Now assume that v, (t) # 0 for ¢ € (a, 8). In this case by dividing equations in
(4) we get

(5) I (8)] + 372(6) = —22(0) + C
0

for some constant C' € R. From Ko(f) = 0 we conclude lim,;_, ||y(t)|| = oo.
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(a) If limy_ g |7, (t)] = oo then (5) gives a contradiction.
(b) If limy .5 |y, (t)] = oo then from (5) we have lim; ,g~,(t) = 0. Therefore
lime_ g f(y(t)) = oo.
Using the same argument, we get lim; ., f(y(t)) = —oo. Summing up, we have
0=B(f) = A(f)gK(f) = {0}.
3. PROOF OF THEOREM 4
We will precede the proof of Theorem 4 by two lemmas and a proposition.
Lemma 5. darbouz ang Let A\g € R and U be an open interval such that U\{\o} C
R\ K(f). For any trajectory v : (o, 8) — R™ satisfying
(i) f(v(e,3))NU #0

(ii) lim¢q foy(t) # Ao # limy—g f 0 y(1),
the inclusion U C f(v(a, B)) holds.

Proof. Supposing the contrary, that there exists yo € U such that

Vie(a,p) fo(t) # yo.
Consider any y1 € f(y(e, 8))NU. Assume that y1 < yo. From the Darboux property
we have
Vie(a,p) [ o(t) <o
Since f o7 is a nondecreasing function (because (f ov)'(t) = ||/ (¢)||? = 0), so
lim (f 0 )(t) € ly1,50] € U < (RAK([)) U {Ao}-

From the assumption (ii) we get that lim;_.g(f o y)(t) € R\ K(f). On the other
hand from Theorem 3 we have lim;_,(fo~v)(t) € K(f) which gives a contradiction.
In the case y; > yo consider lim;_,(f o ¥)(t) similarly as above. |

Suppose that A\g € f(R") and Vf(x) # 0 for z € f~(\g). Take any € > 0
such that (Ao — &, 0 +¢) N K(f) C {Xo}. Denote U = (Ao — &, A0 + &) and let
® :V — f~Y(U) be the general solution of the system 2’ = Vf(z), where V =
{(r,n,t) € Rx R" x R;(1,n) € R x f~Y(U),t € I(r,n)}. Additionally, we will
assume that each trajectory v : (o, 8) — R™ of the field Vf : R® — R™ satisfies :

(i) fim £ o5(t) £ Ao # lim £ 0 (2).

For that specified Ao, U, V, ® we introduce the following indications.
For x € f~1(U) we define t, as a real number for which f o ®(0,z,t,) = X\o. We
show that

Fact 1. The number ¢, is well defined.
Indeed, suppose that there exists zg € f~(U) such that
®(0,20,t) ¢ f1(Ng) fort € I(0,z0).
Then there exists a trajectory 7 : (a, 3) — R™ satisfying (ii) and
f(r(0)) = f(zo) €U N Ao ¢ f(v(e, B)),
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which contradicts Lemma 5. The uniqueness of ¢, follows immediately from
(f o) (t) = IV SN2 > 0, ¢ € 1(0,0),
as Vf(x) # 0 for z € f~1(U). This gives the assertion of the Fact 1.
Now let & € f~1(U) and p € U. Denote by tg a real number for which f o

®(t,€,0) = p. By using Property 2 (®(tf,€,0) = ©(0,&, —tf)) similarly as above
we can show that:

Fact 2. The number tfg is well defined.

The smoothness of f implies the following
Fact 3. The functions

T:fYU)>2—t, €R,
T : ' U)xU> (§p) —ti eR

are smooth.

Indeed, take any zg € f~1(U). By definition, t, satisfies

(fo®)(0,zq,tz,) = Ao
and the function (f o ®)(0,-,-) is of class C* (see Theorem 1) such that
(f 0 @)1(0, 20, tuy) = (f 0 1)i(tao) = [V (4(tao)|I* > 0,

where v = (0, z9). Thus, using the Implicit Function Theorem, there are neigh-

bourhoods: H of xg and K of t;, and a function R : H — K such that for every
x € H the point t = R(x) is the only solution of

(fo®@)(0,z,t) = Ao

in K. Moreover, R is of C>° class. In consequence R = T|g, so the function T is
smooth. The smothness of the function 7™ can be obtained analogously by consi-
dering the function (&, u,t) — (f o ®)(0,&,—t) — p.

Proposition 6. wl ang Let \g € f(R"), Vf(x) # 0 for x € f~1(\o) and let
M —&,+e)NK(f) C { Ao} for some e > 0. Denote U = (Mg — &, g +¢). If
every trajectory of ' =V f(x) satisfies (ii), then

(a) ®(t1,®(0,2,t1),0) =2 forxz e f~HU), t; € 1(0,z)

(b) t =40 forz € fHU), t € 1(0,).

Proof. (a) Let v = v(0,z) : 1(0,2) — f~*(U). Take any ¢; € I(0,x) and denote
& =(t1) = ®(0,z,t1). Then
(I)(tlv (I)(Oa z7t1)70) = (I)(tla€70) = 7(0) =Z.
(b) Let £ = ®(0, z,t) and v = (0, z). Obviously, v(t) = £. Therefore
(fo®)(t,€,0) = f((0)) = f(x).

Moreover, from the definition of ¢; we have

(fo®)(t[),€,0) = f(x),
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and taking into account Proposition 2 and the monotonicity of f o, we obtain

_J@) @
t= 1" =t g O

Lemma 7. trywializacja eng Under the assumptions of Proposition 6, Ay is a
typical value of f.

Proof. Let V = {(1,7,t) € R x R" x R;(7,n) € R x f~Y(U),t € I(r,n)} and
®:V — f71(U) be a general solution of 2’ = V f(x) (in f~1(U)). Define a mapping

U fTHU) 32— (90, 2,t,), f(2) € FH(No) x U,
©: f7 (M) x U > (&) — @(t,£,0) € fTH(U).
Clearly ¥ and © are of class C*°. We will show that ¥ = ©~!. Take any x € f~1(U).

Then
00 (z) = O(B(0,7,1,), f(x)) = ®(t45), , 1, (0,2,12),0).

Using Proposition 6 we get

O 0W(z) = B(thE), . |, ®(0,2,1,),0) = B(te, B(0, 2, t,),0) = .

Now consider any (&, 1) € f~1(M\g) x U and denote v = ¥(0,&). From Lemma 5
there exists o € I(0,&) such that (f o y)(tg) = p. Denote x = (tp). Then & =

®(0,z,t,) and p = f(z). Using Proposition 6 we have t’g = té((:f)?m,tm) =1, and
P(tg,&,0) = O(ty, ©(0,2,1,),0) = =
Therefore
(ToO)(&n) =V(D(t,£,0) =T(z) =
= (2(0,2,ta), f(2))) = (§, 1)
Summarising, ¥ = ©~! and ¥ is C* trivialisation of f over U. (]

Now we can proceed to the proof of Theorem 4.

Proof of Theorem 3. Firstly, let us consider the case when A € Ky(f). Take any
29 € R™ such that Vf(zg) = 0. Then v : R — R"™, v(t) = z¢ for t € R, is the
trajectory of V f field satisfying Ao = lims—, 0 f 0 Y(2).

Now let A\g € (B(f) \ Ko(f)) N f(R™) and suppose that for each trajectory
v : (a, 8) — R" there is

(i) Jim (f 0 9)(t) # X0 # lim(F ) (0).

The finiteness of K(f) allows us to take an open interval U such that K(f) and
UNK(f) C {Mo}. Using Lemma 7 we get that Ag is a typical value of f, which is
contrary to the assumptions.

Finally, let Ao € B(f) \ f(R™). Then Xy must belong to the closu-
re of f(R™) (fip is a C*° fibration). Take any open interval U such that
UNK(f) c {X} and f(zo) = yo € UN f(R™). If Ay = sup f(R™) then
using Theorem 3 for trajectory v : («,8) — R™ such that y(0) = z(, we have
lim;3(f oy)(t) € UNK(f) C {Ao}, which proves the claim in this case. In the
case of A\g = inf f(R™) we consider lim;_,(f o 7v)(t). O
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WARTOSCI BIFURKACYJNE I TRAJEKTORIE POLA GRADIENTOWEGO

Niech f : R®™ — R bedzie semialgebraiczna funkcja analityczna i niech A be-
dzie wartoscia bifurkacyjna funkcji f. W pracy dowodzimy, ze istnieje trajektoria
z : (a,8) — R™ pola gradientowego funkeji f taka, ze limi—., f(x(t)) = A lub
lim; 5 f(z(t)) = A
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