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Abstract
Let k be a field of arbitrary characteristic, let k[x1,...,2,] be the poly-
nomial k-algebra and let p be a prime number. We describe subalgebras of

the form k[f1,..., fn], where f1,..., fn are homogeneous polynomials, such
that k[z,..., 28] C k[f1,..., fn]-

Introduction

Throughout this paper n is a positive integer, p is a prime number and k is a field
of arbitrary characteristic. By k[x1,...,x,] we denote the polynomial k-algebra in
n indeterminates and by (v1,...,v;) we denote the k-linear space spanned by the
elements vy, ..., V.

The following theorem was proved by Ganong in [3] under the additional as-
sumption that the field k is algebraically closed, and without this assumption by
Daigle in [2].

Theorem (Ganong, Daigle). If k is a field of characteristic p > 0, A and B
are polynomial k-algebras in two indeterminates such that AP g B ; A, where
AP = {aP; a € A}, then there exist x,y € A such that A = k[z,y] and B = k[zP, y].
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It is natural to consider this problem in the case of n variables. In this paper
we consider the homogeneous version of such a general problem, partially based on
[6] and [7]. Note that some questions related to this problem were discussed in [4].

Denote by T'(n,p) the following statement:

"For every field k and arbitrary homogeneous polynomials f1, ..., fn € k[z1, ...,
Zn], such that

(]') k[xi)??xz]gk[flaafn]a

the following holds:

k[xlf,...,xm, if chark # p,

(2) k[flw-')fn] = P )
k[yh'-~7yﬁqum+1a-~'ayn]v Z.f char k& =D,

for some ly,...,l, € {1,p}, some m € {0,1,...,n}, and some k-linear basis

”

Yiy - Yn Of (T1,. .., Tn).

The statement T'(n,p) was proved in [6] in the following particular cases:
1° p = 2 and arbitrary n,
2° p = 3 and arbitrary n,
3° n =2 and arbitrary p,
4° n=3 and p < 19,

5 n=4and p<7.

In this paper we prove the statement T'(n,p) for arbitrary n and p (Theo-
rem 2.2). In the proof we use a general form of well known Krull Theorem about
principal ideals ([1], 5.2.10).

Theorem (Krull). Let R be a noetherian commutative ring with unity, let P be
a minimal prime ideal of an ideal generated by n elements. Then the height of P
s not greater than n.

Note a close connection of our problem with the question about polynomiality
of the ring of constants of a derivation. If k is a field of characteristic p > 0, then
the ring of constants of every k-derivation of k[xy,...,x,] contains k[z¥, ... zP].
Some information about rings of constants in positive characteristic can be found,
for example, in [9], [10]. The ring of constants of a homogeneous k-derivation is
always generated by homogeneous polynomials. Thus, the positive characteristic
case of our problem is related to a description of rings of constants of homogeneous
derivations, which are polynomial subalgebras (Theorem 3.1). The second author
in [8] characterized linear derivations with trivial rings of constants and trivial
fields of constants, in the case of chark = 0 (see also [9]). The first author in
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[5] obtained a description of linear derivations with ring of constants generated by
linear forms. Now we know that, in the positive characteristic case, these are all
rings of constants of linear derivations, which are polynomial k-algebras.

At the end of the paper (Theorem 3.3) we present a generalization of T'(n,p)
for n arbitrary prime numbers, obtained in [7].

1 Preliminaries

Let k£ be a field, let n be a positive integer and let p be a prime number.
Let f1,...,fn € k[z1,...,2,] be homogeneous polynomials of degrees r1,...,7,,
respectively, satisfying (1). The following facts have been proved in [6]. We adopt
their proofs to make our exposition complete.

Lemma 1.1 ([6], 2.3 a) The polynomials f1,..., f, are algebraically independent
over k.

Proof. By the assumption (1) we have the following field extensions
kCk(x,...;2P) Ck(f1,...,[n) Ck(x1,...,2).

We see that the transcendence degree of the field extension k& C k(f1,..., fn) is

equal to n, so fi,..., fn are algebraically independent over k. [

Corollary 1.2 The polynomials f1,..., fn are nonzero.

Lemma 1.3 ([6], 2.3 b) Fori=1,...,n we can present 2% in the following form:
(3) a? = > ald) fe L o,

Q1,0 20
arrit...tapr,=p

(4) (4)

where ay’ € k for a = (a1,...,ay). The elements ay’ are uniquely determined.

Proof. For i = 1,...,n the polynomial z¥ belongs to k[f1,..., fn] by the as-
sumption (1). Then z¥ = F;(f1,..., f») for some polynomial F; € k[Ty,...,T,].
Put

Fi= Y a1 1o,

A1y 0 20

where a = (aq,...,q,), ag) € k, and agf) = 0 for only finitely many «. We obtain

ol = e

Q1,enn,00, 20

Recall that the polynomials f1, ..., f, are homogeneous of degrees r1, ..., 7.
Hence, each polynomial f** ... f®» is homogeneous of degree a171+. ..+, 1y, and
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x¥ equals to the sum of all summands of degree p, that is, satisfying the equality
a1ry + ..o+ apry, =P

Now, suppose that

Yoo A= Y W

Q1,0 20 Q1,0 20
ai1r1+...Fan R =p a1rit...Faprn=p
for some a(()f), bg) € k. The polynomials fi,..., f, are algebraically independent

over k (Lemma 1.1), so at? = b for every a. Thus the presentation (3) is unique.

O

Lemma 1.4 ([6], 2.3 d) The degrees r1,...,r, satisfy the inequalities
1<ry,...,ry < p.

Proof. If r; = 0 for some j € {1,...,n}, then f; € k, but it is impossible, because
fi,-.., [n are algebraically independent over k (Lemma 1.1).

If r; > p for some j € {1,...,n}, then in (3), in each equality

airy ...+ QT+t apTy =p

for aq,...,ay 2 0, we have a; = 0. Then from Lemma 1.3 for ¢ = 1,...,n we have
D __ (i) poa Qj—1 pQj41 an
x, = E ag  fit e f20 R

ai,...,0, 20
arrit...tapry,=p

sox? € k[fi,..., fim1, fi41s oo fnl
Hence
klay, ... 22] Ck[f1,..., fi—1, fit1s- s ful,
and we obtain a field extension

k(xf,....ab) Ck(fi,. s fimt, fjton fn)s

where trdegy, k(a},...,28) = n, trdeg, k(f1,.. ., fi—1, fj+1,---+ fn) =n—1; 50 we
have a contradiction.

Therefore, for each j € {1,...,n} we have r; >0 and r; <p. O

The following proposition from [7] will be useful in the proof of Theorem 2.2.

Proposition 1.5 ([7]) Let k be a field. Let g1,...,95 € k[z1,...,2,] be homo-
geneous polynomials, algebraically independent over k, of degrees r1 < ... < rg,
respectively. Let hy,..., hs € klx1,...,2,] be homogeneous polynomials of degrees
t1 < ... < tg, respectively. Assume that

klgi,-..,9s) = k[h1,..., hs].

Thenr; =t; fori=1,...,s.
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Proof. Note that the polynomials hi,...,hs are also algebraically independent
over k, because

trdegy, k(h, ..., hs) = trdegy k(g1,...,9s) = s.

Similarly as in Lemma 1.3, for ¢ € {1,...,s}, since g; € k[hq,...,hs], the
following equation holds:

— i) Q1 a
gi = E aDhgr . RS,
or,...,05 20
arti+...tosts=r;

where a¥l) € k for o = (o1, .., 0).
Suppose that r; < t;, where j € {1,...,s}. Then for ¢ € {1,...,j} and
le{j,...,s} we have r; < t;, so aq = 0 in each equality
ot + ... +aitp + ..+ agts =1y
If j=1,theni=1and a; = ... = ay = 0; a contradiction. If j > 1, then we
obtain ‘
gi = > ORI S

ap,...,a5-120
ajtit... a1t _1=r;

where bg) € kfor a = (aq,...,aj_1). Therefore, the polynomials g, ..., g; belong
to k[h1,...,hj_1], and we have a contradiction with transcendence degrees, as in
the proof of Lemma 1.4. [

2 The main theorem

Recall that fi,..., fn € klz1,...,z,] are homogeneous polynomials of degrees
r1,...,Tn, respectively, satisfying (1). It was proved in [6] that if these degrees are
already equal 1 or p, the thesis of T'(n, p) holds.

Proposition 2.1 ([6], 2.5) Ifr1,...,r, € {1,p}, then (2) holds.

Proof. Assume that ri,...,7, = 1. We know (Lemma 1.1) that fi,..., f, are
algebraically independent over k, so fi,..., fn, are linearly independent over k.
Then f1,..., f, form a basis of the k-linear space (z1,...,z,), and we have

k[fla-”a.fn] :k[l'l,...,l'n],
so (2) holds.

Now, assume that rq,...,r, = p. Then the equality ayr, +...+ a7, = p from
Lemma 1.3 is equivalent to a3 + ...+ a, = 1. This means that a; =1 for some j
and oy = 0 for [ # j, and the only summands in (3) are the following:

xi) = agi)fl + ...+ G,Eli)fn,
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where a;i) €k, fori,j=1,...,n. Hence 2%, ..., 2P belong to the k-linear space

(f1,..., fn) and form a basis of this space. Therefore

klfi, .- fal = klaf, ... al],
and (2) holds.

Now, we may assume that

mn=...="m=25,, rm+1:...:Tn=1
for some m € {1,...,n — 1}, where n > 2. Note that f,,+1, ..., fn are linearly
independent linear forms. We may choose elements xj,, ..., xj,, where 1 <
J1 < ... < Jm < m, such that z;,,...,2;,., fmt1,..., fn form a k-linear basis of
(x1,...,2n). We introduce new coordinates:
Y1 = Zji5- -5 Ym = Tjy Ym+1 = fm+17-~-ayn = fn
Consider a homomorphism of k-algebras ¢: k[y1,...,yn] = k[y1,...,Ym] such

that ¢(y;) = y; for i < m and ¢(y;) = 0 for ¢ > m. Put g; = o(f;) € k[y1,- .-, Ym]
for ¢ < m. Then

o(klf1,- s ful) = Klo(f1), - 0(fm)s (fmt1)s - - p(fn)] = Klg1, -, gl

and

Note also that

kly?s - ym] = Ele)?, s o(ym)?] C Elp(@1)?s ..o o(@0)P].

Hence, applying the homomorphism ¢ to the inclusion (1), we obtain that

kg, ... 8] C klo(z1)?, ..., 0(xn)?] C klg1,- -, Gm)-

The polynomials gi,...,9m € k[y1,...,Ym] are homogeneous of degree p, so
in this case, as we have already observed above, 3%, ..., yP, form a basis of the
k-linear space (g1, ..., gm)-

Let j € {1,...,m}. We have g; € (y/,...,y%,), so g; is a linear combination of
af ..., 2% . By Lemma 1.3 we obtain

1 Im
gi =D fi+ D f by,
where ng), cey ) e k, hj € k[fm+1,- -, fn] and h; is a homogeneous polynomial
of degree p. Since g; € (y1,...,yE,), we have also

95 =90:) = fi+ .+ D+ hy) =P g+ 4+ D g
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This implies that cg-j) =1and cl(j) = 0 for [ # j, because the polynomials g1, ..., gm

are linearly independent over k. Finally, g; = f; + h; for j =1,...,m, so

(4) k[flavfn] = k[gla"'vgmvfm+17~“7fn] = k[y;fw"7yrp;mym+17~“7yn]v

and we are done if char k = p.

Assume that char k # p. Put

{1""’n}\{j17~-~7jm} = {jm+1a-~-ajn}a

where 1 < jpm41 < ... < jp < n. Take any j € {jm+1,...,4n} Put x; = w; + 2,
where w; € (y1,...,Ym) and 2; € (Ymy1,...,Yn). Note that z; # 0, because z; ¢
(Y15, Ym). Consider x§ = (w;j+2;)? as a polynomial in variables yi, ..., ym over

klYm+1,---,Yn]. Observe that pwjzf 1 is the homogeneous component of degree
1 of this polynomial. On the other hand, we have x? eklyl, . Y Ymat, - s Yn)

by (1) and (4), so all nonzero homogeneous components (of 2% as a polynomial in

variables y1, ..., Ym over k[Ym+1,---,yn]) have degrees divisible by p. Therefore
pwjzg-’*l =0,s0 w; =0 and &; € (Ym+1,.-.,Yn). We obtain that the elements
Tj, 15 -5 &j, belong to the k-linear space (Ym+1,--.,Yn), so they form a basis of

this space. Finally, (Ym1,....Yn) = (Tj,,,,---,25,), and

k[fl;---,fn] = k[yfv"wyfnaym-ﬁ-la"'ayn] = k[z§17"')z§7n7xj7n+17"'7xjn}' 0

Now we prove that T'(n,p) holds for arbitrary n and p.

Theorem 2.2 Let n be a positive integer and let p be a prime number. For
every field k of arbitrary characteristic and arbitrary homogeneous polynomials
fis-oos fn € klxy, ..., 2], such that

(1) klzh, ... 2P] C k[fi,..., fal,

the following holds:

k[xll,...,xfﬂ, if chark # p,
k[ylw"7y7€7,7ym+1a"'7yn]’ Zf chark:p7
for some ly1,...,l, € {1,p}, some m € {0,1,...,n}, and some k-linear basis

Yis-- 3 Yn 0f<x17"'7xn>-

Proof. Observe that T'(1,p) holds. Namely, if k[z?] C k[f] for some homogeneous
polynomial f € k[z] of degree r, then aP? = af*® for some a € k and s > 1 such
that rs = p. Hence r = 1 or s = 1. If r = 1, then k[f] = k[z]. If s = 1, then
k[f] = kla?].

Let n > 2. Assume that T(n — 1, p) holds.
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First, we will show that if r; = 1 for some j, then (2) holds. If f; is a linear
form, then there exist ¢ € {1,...,n} such that

:Ela"'axi—lyfj7xi+17"'7xn
form a k-linear basis of (x1,...,2z,). Consider a homomorphism of k-algebras
w: k[m1,...,xn] — k‘[xl,...,l‘i_1,$i+1,...,$n]

such that ¥(x;) = x; for each [ # ¢ and ¥(f;) = 0. Applying this homomorphism
to the inclusion (1) we obtain that

p p »
klzy, ..oy, 2p 1,2 CElg1,. .., 05-1,9541, -+ Gnl,

for some homogeneous polynomials ¢1,...,9j-1,9j+1,---,9n € k[T1, ..., Ti—1,

Tit1, ..., &) of degrees ri,...,75_1,7j41,...,Ty, respectively.

By T'(n — 1,p) we obtain that

l li—1 i1 In :
klzt, .. iy oy, op],  if chark # p,
k[gla"'agj—lagj-‘rla"'vgn]: » » .
k2], .., 200, Zmi 415« -, Zn—1], if chark =p,
for some ly,...,0Li—1,liv1,...,ln € {1,p}, resp. for some m' € {0,1,...,n — 1}
and some k-linear basis z1,..., 2,1 of (X1,...,%i—1,%it1,...,2Tn). In each case,

T1,...sTj—1,7j41,---,Tn € {1,p} by Proposition 1.5. Hence (2) holds by Proposi-
tion 2.1.

Now we may assume that ry,...,7, > 1.

Recall (Lemma 1.4) that rq,...,r, < p. Suppose that r; < p for some j €
{1,...,n}, for example, r,, < p. For i = 1,...,n we can present z! in the following
way: 4 4

gy + KO,

where gj(»i) € klfj,...,fa]forj=1,...,n—2and h® € k[fn_1, fn]. More precisely

(see Lemma 1.3):
h® = Z a‘(::,),e (A

a,3>0
arp_1+Brpn=p
Since 1 < r,, < p, we have always fr, # p, so each equality ar,_1 + fr, = p yields
that a # 0. This means that A" is divisible by f,,_1, and then 2% belongs to the

ideal I = (f]_7 . .,fn,]_).

Let P be a minimal prime ideal of the ideal I. We have 2! € P, so z; € P
for every i € {1,...,n}. Thus P = (z1,...,x,), because (z1,...,z,) is a maximal
ideal. On the other hand, by Krull Theorem, since the ideal I is generated by
n — 1 elements, the height of the ideal P is not greater than n — 1; so we have a
contradiction.
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Hence, r; = p for each j, and (2) follows from Proposition 2.1. O

Note that Theorem 2.2 gives a positive answer to Question I stated in [4].
We also obtain a partially positive answer to Question III, if we restrict it to the
homogeneous case.

3 Some related problems

Recall that a k-linear map d: klz1,...,z,] — k[z1,...,2,] such that d(fg) =
d(f)g+ fd(g) for every f,g € k[z1,...,x,], is called a k-derivation of k[x1, ..., zy].
Such a derivation is uniquely determined by polynomials g1 = d(x1), ..., g, =
d(z,) and it is of the form

0 0

The kernel of a k-derivation d is called the ring of constants and is denoted by
k[zy,...,2,]% If chark = p > 0, then

Elz?, ... 2] C k[z1,..., 2%

A derivation d of the above form (5) is called homogeneous of degree s, for some
s € Z, if the polynomials ¢, ..., g, are homogeneous of degree s + 1 (the zero
polynomial is homogeneous of any degree). In this case, if f € k[z1,...,2,] is a
homogeneous polynomial of degree r, then d(f) is homogeneous of degree r + s.
It is easy to observe that the ring of constants of a homogeneous derivation is a
graded subalgebra. Therefore we can deduce the following from Theorem 2.2.

Theorem 3.1 Let d be a homogeneous k-derivation of the polynomial algebra
k[z1,...,2n], where k is a field of characteristic p > 0. Then k[zy,...,x,]¢ is
a polynomial k-algebra if and only if

k[xlv-“axn]d:k[yfr--ay%vym-&-la--wyn]
for some m € {0,1,...,n} and some k-linear basis y1,...,Yn of (x1,...,Zy).

A k-derivation d of k[zq,...,x,] is called linear if d is homogeneous of degree
0, that is, the polynomials ¢1, ..., g, in (5) are linear forms. The restriction of
a linear derivation to the k-linear space (z1,...,x,) is a k-linear endomorphism.
Every endomorphism of (x1,...,z,) uniquely determines linear forms g1, ..., gn,
and then a unique linear k-derivation. We have the following corollary from the
above theorem and Theorem 3.2 from [5].

Corollary 3.2 Let d be a linear derivation of the polynomial algebra klzy, ...,
x,], where k is a field of characteristic p > 0. Then k[z1,...,2,]? is a polynomial
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k-algebra if and only if the Jordan matriz of the endomorphism d|,
the following conditions.

) satisfies

.....

(1) Nonzero eigenvalues of different Jordan blocks are pairwise different and linearly
independent over IF,.

(2) At most one Jordan block has dimension greater than 1 and, if such a block
exists, then:

(a) its dimension is equal to 2 in the case of p > 2,

(b) its dimension is equal to 2 or 3 in the case of p = 2.

Now, let us note that Theorem 2.2 can be generalized in the following way.

Theorem 3.3 ([7]) Let k be a field and let f1,..., fn € kl[z1,...,2,] be homoge-
neous polynomials such that

klo1',... 2l ] Ck[fy,. .., ful
for some prime numbers p1,...,pp.
a) If chark # p; for everyi € {1,...,n}, then
E[f1, .- fa) = Kl 2l
for somely € {1,p1},..., 1, € {1,pn}.

b) If char k belongs to the set {p1,...,pn}, then

KUy fl = RIS

for some Iy € {1,p1},...,ln € {1l,pn} and some k-linear basis y1,...,Yn of
(x1,...,2n) such that

<yi§ Z€T> = <(,Ci; i€T>7
yi =x; forie{1,...,n}\ T,

where T = {i € {1,...,n}; chark = p;}.

It may be interesting to ask, what can we say about subalgebras satisfying the
following condition:

k[z’inl’ c ?x?n] g k‘.[fh ct fTL]a
where myq, ..., m, are positive integers.

Finally, note that in this article we have considered only homogenous cases.
Ganong and Daigle solved the general (non-homogeneous) problem in two variables.
A general problem, even for three variables, remains open.
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