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THE PROBLEM OF CONVEXITY AND COMPACTNESS

OF SOME CLASSES OF CARATHÉODORY FUNCTIONS

J. Fuka (Praga), Z.J. Jakubowski ( Lódź)

1. The article belongs to the cycle of papers [1]–[5], where different classes
of functions defined by conditions on the unit circle T were studied. The
results from [6] are completed. As usual, we shall denote by C the complex
plane, by D = {z ∈ C; |z| < 1} the unit disc, by T = {z ∈ C; |z| = 1} the unit
circle.

Let P denote the class of functions of the form

(1) p(z) = 1 + q1z + . . .+ qnz
n + . . .

holomorphic in D with Re p(z) > 0 for z ∈ D and, for a given set F ⊂ C, let
Fτ = {ξ ∈ C; e−iτξ ∈ F} be the set arising by rotation of F through the angle
τ .

Definition 1 (see [2], [3], [4]). Let 0 ≤ b < 1, b < B, 0 < α < 1 be fixed real
numbers.

a) Let F ⊂ T be a closed set of Lebesgue measure 2πα. By P (B, b, α;F )
we denote the class of functions p ∈ P satisfying the following conditions:
there exists τ = τ(p) ∈ ⟨−π, π ) such that

Re p(eiθ) ≥ B a. e. on Fτ

and
Re p(eiθ) ≥ b a. e. on T\Fτ .
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b) By P (B, b, α) we denote the class of functions p ∈ P such that there
exists a closed set F = F (p), F ⊂ T, of Lebesgue measure 2πα such that

(2) Re p(eiθ) ≥ B a. e. on F

and

(3) Re p(eiθ) ≥ b a. e. on T\F.

c) For a fixed τ ∈ ⟨−π, π), by P (B, b, α;F, τ) we denote the set of all func-
tions from P (B, b, α;F ) satisfying (2) and (3) on Fτ and T\Fτ , respectively.

d) By P̃ (B, b, α) we denote class of functions p ∈ P such that there exists
an open arc I = I(p) ⊂ T of Lebesgue measure 2πα such that (2) and (3) are
fulfilled for F = Ī.

e) Let F ⊂ T be a fixed closed set of Lebesgue measure 2πα. By P̌ (B, b, α;F )
we denote the class of functions p ∈ P fulfilling (2) and (3).

In paper [2] (Th. 3; see also [4], L.1) it was proved that the class P̃ (B, b, α)
is compact in the topology given by the uniform convergence on compact
subsets of D, but it is not convex (Th. 5). On the other hand, each class
P̌ (B, b, α;F ), especially P̌ (B, b, α; Ī) (see e.g. [3], Th. 6 and [4] L.1) is convex.
The class P (B, b, α;F, τ) defined in Def. 1 (c) are convex and compact ([4],
part 3) and the classes P (B, b, α;F ) are also compact ([4], part 3). In this
paper we shall discuss the problem of convexity and connectedness for the
classes P (B, b, α;F ) and the problem of convexity and compactness for the
class P (B, b, α).

2. In the sequel, we denote by l(A) the normalized Lebesgue measure on
T (l(T) = 1). We shall need the following

Lemma 1. Let F ⊂ T be a closed set, l(F ) = α, 0 < α < 1. Then for each
τ ∈ ⟨−π, π), there exists δ > 0 such that l(Fτ+h ∩ Fτ ) < l(Fτ ) for each h,
0 < |h| < δ.

Proof. Without loss of generality we can choose τ0 = 0 and F0 to be perfect
(because the set of isolated points of F0 is countable and hence a set of
Lebesgue measure zero). Denote by DF0 the set of density points of F0 (i.e.

ξ ∈ DF0 if and only if limr→0
l(F0∩B(ξ,r))

2r = 1 where B(ξ, r) is the arc T with
centre at the point ξ and l(B(ξ, r)) = 2r. Then (see [7], Exercise 11, p. 177)
l(DF0) = l(F0) = α > 0. Hence each interval containing a point of F0 contains
a point of DF0 . Denote G0 = T\F0, so l(G0) = 1 − l(F0) = 1 − α > 0. G0 is
an open subset of T, hence G0 is the sum of a nonvoid finite or countable
family of mutually disjoint open arcs Gi ⊂ T. Let l(Gi0) ≥ l(Gi) for every
i and put δ = l(Gi0). The endpoints ξ0, ξ1 of Gi0 are lying in F0. So, by
rotating F0 through any angle h, |h| < δ, Gi0 ∩ F0 contains ξ0 and ξ1, and
so, in any case, a point ξ ∈ DF0 and an arc B(ξ, r0). Take 0 < r < r0 such
that l(F0 ∩ B(ξ, r)) > 1

2 l(B(ξ, r)) = r. Then F0 ∩ Fh ⊂ F0\(F0 ∩ B(ξ, r)), so
l(F0 ∩ Fh) ≤ l(F0) − r < l(F0).

Theorem 1. P (B, b, α;F ) is not convex.

Proof. By Theorem 2 of [6] (this volume, p. 17), there exists a non-constant
function p ∈ P (B, b, α;F ) such that Re p(eiΘ) = B a.e. on F , Re p(eiΘ) = b
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on T\F (cf. [4] , (12) and [6], Th. 2). Take 0 < τ < min(α, 1 − α) and
define pτ (z) = p−2πiτz), z ∈ D. Obviously, pτ ∈ P (B, b, α;F, τ). Join p, pτ
by the segment pλ = λpτ + (1 − λ)p, 0 ≤ λ ≤ 1. Clearly, pλ(0) = 1. One has
Re pλ(ξ) ≤ λb+(1−λ)B < B on T\Fτ for λ > 0 and Re pλ(ξ) ≤ λB+(1−λ)b < B
on T\F for λ < 1. So, only a.e. on Fτ ∩ F Re pλ(ξ) ≥ B can be fulfilled. By
Lemma 1, there exists some δ = δ(F ) > 0 such that l(F ∩ Fh) < l(F ) for each
h, |h| < δ. Hence, for each λ ∈ (0, 1), pλ does not belong to P (B, b, α;F ).

Theorem 2. P (B, b, α;F ) is arcwise connected (and thus connected).

Proof. Let p1, p2 ∈ P (B, b, α;F ). Then there exists τ1, τ2 ∈ ⟨−π, π) such that
pk ∈ P (B, b, α;F, τk), k = 1, 2,. Since the classes P (B, b, α;F, τ) are convex, we
can join p1, p2 by a segment with pFτ1

+ 1 − η, pFτ2
+ 1 − η, respectively, and

then pFτ1
+ 1 − η with pFτ2

+ 1 − η by the arc τ → pFτ + 1 − η, τ1 ≤ τ ≤ τ2 (cf.
[4], Remark 2).

Remark 1. In the case B ≤ 1, the assertion of Theorem 2 is obvious because
p(z) ≡ 1, z ∈ D, belongs to P (B, b, α;F, τ) for each τ ∈ ⟨−π, π).

Remark 2. All the properties of the class P (B, b, α;F ) which we have ex-
amined up to now (i.e. compactness, convexity and connectedness) require
non-trivial means from real analysis for their proofs, but can be proved al-
most trivially if we restrict our attention to the classes P (B, b, α;F, τ). In
this context, the following properties can be of some interest.

Lemma 2. For each τ ∈ ⟨−π, π), we have

lim
h→0

l(Fτ+h ∩ Fτ ) = l(Fτ ).

Proof. We can suppose τ = 0 and write Fτ = F0. Since χFh∩F0 = χFh
χF0 , we

have

l(F0) − l(Ff ∩ F0) =

∫ π

−π

(χF0 − χF0χFh
)
dt

2π
=

∫ π

−π

(χ2
F0

− χF0χFh
)
dt

2π

=

∫ π

−π

χF0(χF0 − χFh
)
dt

2π
≤

∫ π

−π

|χF0 − χFh
| dt
2π

=

∫ π

−π

|ψF0(t+ h) − ψF0(t)| dt
2π

where we denoted ψF0(t) = χF0(eit). But limh→0

∫ π

−π
|ψF0(t+ h)−ψF0(t)|dt = 0

(see e.g. [7], Th. 9.5, p. 183) and limh→0 l(F0 ∩ Fh) = l(F0).

Theorem 3. Let η < 1. Then there exists τi = τi(F ), i = 1, 2, such that, for
each τ ∈ (−τi, τi), i = 1, 2, we have

(i) P (B, b, α;F, τ) ̸= P (B, b, α;F, 0) for 0 < |τ | < τ1,
(ii) P (B, b, α;F, τ) ∩ P (B, b, α;F, 0) ̸= ∅ for |τ | < τ2.

Proof. (i) By Lemma 1, there exists τ1 > 0 such that, for each τ ∈ (−τ1, τ1),
one has l(F ∩ Fτ ) < l(F ). Hence the function P̃F (z) = b + (B − b)h(z;F ) +

(1 − η) eiγ+z
eiγ−z , γ real, z ∈ D, does not belong to P (B, b, α;F, τ) since
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Re P̃F (eiΘ) = b < B a.e. on Fτ\F , l(Fτ\F ) = l(Fτ )−l(Fτ∩F ) = l(F )−l(F∩Fτ ) >
0.

(ii) Define

f(eit) = B a.e. on F ∪ Fτ ,

f(eit) = b on T\(F ∪ Fτ )

and define

p(z) =
1

2π

∫ π

−π

f(eit)
eit + z

eit − z
dt, z ∈ D.

Then Re p(eiΘ) = B a.e. on F ∪ Fτ , Re p(eiΘ) = b on T\(F ∪ Fτ ). It is clear
that Re p fulfils condition (2) a.e.on F and Fτ and condition (3) on T\F and
T\Fτ . An easy calculation gives

(4) p(0) =
1

2π

∫ π

−π

f(eit)dt = η + (B − b)[l(F ) − l(F ∩ Fτ )].

But, by Lemma 2, limτ→0 l(F ∩ Fτ ) = l(F ). Hence, by (4) and on account of
η < 1, there exists τ2 > 2 such that p(0) < 1 for |τ | < τ2 Then the function

p̃(z) = p(z) + (1 − p(0))
eiγ + z

eiγ − z
, γ- real, z ∈ D,

belongs to P (B, b, α;F, τ) ∩ P (B, b, α;F, 0) for each τ ∈ (−τ2, τ2).
3. Now, we shall consider the problem of compactness and convexity for

the class P (B, b, α).
The estimates of the linear functionals Re p(z) and Im p(z), z ∈ D fixed,

given in [5] (Th. 2), and also the estimates (see [5], Remark 3) of the convex
functionals |qk|, k = 1, 2, . . . , are interesting from the following point of view:
they are valid on all the closed convex hull of P (B, b, α), although P (B, b, α)
is neither convex nor compact (this wil be shown in this section). Recall,
that the topology on P (B, b, α) is the restriction of the topology given by
uniform convergence on compact subsets of D on the set of all functions
holomorphic in D and that the class P is compact and hence P (B, b, α) is
relatively compact in P in this topology.

Theorem 4. The class P (B, b, α) is neither convex nor compact.

Proof. First, we prove that P (B, b, α) is not convex. Let pF (z) = b + (B −
b)h(z;F ), z ∈ D (see, for example, [6], (14)). Take p1(z) = pF1(z) + (1− η) 1+z

1−z ,

p2(z) = pF2 + (1 − η) 1+z
1−z , z ∈ D, where the closed sets Fi, i = 1, 2, are chosen

in such a manner, that 0 ≤ m(F1 ∩F2) < α. Put pt = tp1 + (1− t)p2, 0 < t < 1.
Since Re 1+z

1−z = 0 a.e. on T, Re pFi = B a.e. on Fi, Re pFi = b a.e. on T\Fi and
tb + (1 − t)B < B for 0 < t < 1, Re pt = B a.e. on F1 ∩ F2 and Re pt < B a.e.
on T\F1 ∩ F2. Since m(F1 ∩ F2) < α, pt does not satisfy (2) and so does not
belong to P (B, b, α).

Now, we prove, that P (B, b, α) is not compact. Since P (B, b, α) ⊂ P , it is
sufficient to prove that P (B, b, α) is not closed. Put

(5) pn(z) = b+ (B − b)hFn(z) + (1 − η)
1 + z

1 − z
, z ∈ D,
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where

Fn =
n∪

k=1

F k
n , F k

n =
{
z ∈ T; z = e

2kπi
n eiρ, −απ

n
≤ ρ ≤ απ

n

}
,

and

hFn(z) = α+ 2

∞∑
r=1

sinαπr

πr
zrn, z ∈ D

(see [3], p. 2). For z ∈ D, |z| ≤ ρ < 1, we have

|hFn
(z) − α| ≤ 2

∞∑
r=1

| sinαπr|
πr

ρrn ≤ 2ρn
∞∑
r=0

(ρn)r =
2ρn

1 − ρn
,

and so, the sequence {hFn}∞n=1 is uniformly convergent to the constant func-
tion α on every compact subset of D. Denoting p0(z) = η + (1 − η) 1+z

1−z ,
η = αB+ (1−α)b, and using (5) we see that pn(z) → p0(z) uniformly on com-
pact subsets of D. But the function Rep0 is equal η a.e. on T, since Re 1+z

1−z

is zero a.e. on T. Since η < αB + (1− α)B = B, p0 does not fulfil (2), and so,
does not belong to P (B, b, α).

Remark 3. The idea of the sequence {pn} comes from Theorem 5 of [6]:
the function pn realizes the maximum modules of the n-th coefficient in the
class P (B, b, α). The measure µn in the Poisson representation of pn is the
sum of two parts: the (absolutely continuous) part [b+ (B − b)χFn(t)] dt2π and
the (singular) part (1 − η)ε0 where ε0 is the Dirac measure sitting a the
point t = 0. Now, intuitively, the measures χFn(t) dt

2π spread to the measure
α dt

2π and the limit function p0(z) which is represented by the limit measure
η dt
2π + (1 − η)ε0 and does not belong to P (B, b, α).
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Zagadnienia wypuk lości i zwartości
pewnych klas funkcji Carathéodory’ego

Streszczenie. Niech P oznacza znana
‘
klase

‘
funkcji p(z) = 1 + q1z + . . . holo-

morficznych w kole jednostkowym D i takich, że Re p(z) > 0 w D. W artykule
sa

‘
badane zagadnienia wypuk lości lub zwartości podklas P (B, b, α;F ) i

P (B, b, α) rodziny P określonych w Definicji 1. Praca należy do cyklu pu-
blikacji [1]–[5], gdzie by ly rozważane różne klasy funkcji holomorficznych
w D i spe lniaja

‘
cych na okre

‘
gu jednostkowym T pewne warunki. Stanowi

uzupe lnienie rezultatów z pozycji [6].

Bronis lawów, 11–15 stycznia, 1993 r.


