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ON COEFFICIENT ESTIMATES IN A CLASS
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1. This article belongs to the cycle of papers ([4], [5], [6]) where different
classes of functions defined by conditions on the unit circle were studied.
The results of papers [5], [6] are generalized. Omitted proofs and other new
results will be published in [7]. As usual, we shall denote by C the complex
plane, by D = {z ∈ C; |z| < 1} the unit disc, by T = {z ∈ C; |z| = 1} the
unit circle. In our further considerations, we shall treat T as the subset
of C with the induced topology on the one hand, on the other hand, as
a set homeomorphic to T, namely, as the subset ⟨−π, π) of the real line
R, endowed with the factor topology R/2πZ where Z is the set of integers.
Therefore we shall sometimes treat the function f(eiΘ) : T → C as a function
f(t) : ⟨−π, π) → C.

Let P denote the class of functions of the form

(1) p(z) = 1 + q1z + . . . + qnz
n + . . .

holomorphic in the unit disc D with Re p(z) > 0 in D ([2]).
Let us recall some properties of real parts of functions from P , which will

be essential in what follows:
(a) Every function Re p(z), p ∈ P , has the Poisson representation by a

unique positive measure ([3], p. 21–24, [8], p. 11–12)

(2) Re p(z) =

∫ π

−π

Re
eit + z

eit − z
dµ(t)
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where dµ(t) ≥ 0 and
∫ π

−π
dµ(t) = 1; conversely, every function p holomorphic

in D whose real part is given by (2), where dµ(t) ≥ 0 and
∫ π

−π
dµ(t) = 1, and

for which Im p(0) = 0, is lying in P .
b) Let dµ(t) = f(t) dt

2π + dσ(t) be the Lebesgue decomposition of the repre-
senting measure µ with respect to the normalized Lebesgue measure dt

2π on
⟨−π, π⟩, i.e.

∫ π

−π
f(t)dt < ∞, f ≥ 0 almost everywhere (a.e.) on ⟨−π, π⟩ with

respect to dt
2π and dσ is singular. Then Re p(z) has nontangential limits a.e.

on ⟨−π, π⟩ and

(3) Re p(eiθ) = f(eiΘ) a. e. on ⟨−π, π⟩

(see [8], Chapter 1, Th. 5.3).
In [5] the following subclass P̃ (B, b;α), 0 ≤ b < 1, b < B, 0 < α < 1, of P

was introduced: p ∈ P̃ (B, b;α) if there exists an open arc Iα = Iα(p) of T of
length 2πα such that

(4) lim
z→z0,
z∈D

Re p(z) ≥ B for each z0 ∈ Iα

and

(5) lim
z→z0,
z∈D

Re p(z) ≥ b for each z0 ∈ T\Īα.

Among other results, the following properties of P̃ (B, b;α) were proved in [5]:
1) a necessary and sufficient condition on the parameters B, b, α for P̃ (B, b;α)

to be nonvoid was given; 2) P̃ (B, b;α) is compact in the topology given by
the uniform convergence on compact subsets of D; 3) P̃ (B, b;α) is not convex.

In this paper we generalize all these results to the situation where arcs
are replaced by closed measurable subsets of T.

We start with the following reformulation of conditions (4), (5). The
generalization is motivated by

Lemma 1. Let Iα ⊂ T be a given open arc and let p ∈ P . The following
conditions are equivalent:

(c) p fulfills conditions (4) and (5),
(d) p fulfills the conditions:

(6) Re p(eiθ) ≥ B a. e. on Iα,

(7) Re p(eiθ) ≥ b a. e. on T\Īα.

Here Re p(eiΘ) are nontangential limits of Re p which exist a.e. on T by (b).

Now, we are in a position to give our main definition.
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Definition 1. Let 0 ≤ b < 1, b < B, 0 < α < 1, be fixed real numbers and F a
given closed subset of the unit circle T of Lebesgue measure 2πα. For each
τ ∈ ⟨−π, π), denote by Fτ = {ξ ∈ T; e−iτξ ∈ F} the set arising by rotation of
F through the angle τ . Denote by P (B, b, α;F ) the class of functions p ∈ P
satisfying the following conditions: there exists τ = τ(p) ∈ ⟨−π, π) such that

(8) Re p(eiΘ) ≥ B a.e. on Fτ

and

(9) Re p(eiΘ) ≥ b a.e. on T\Fτ .

It follows directly from Definition 1 that, for B > 1, the class P (B, b, α;F )
does not contain the function p0(z) ≡ 1, z ∈ D. If B ≤ 1, then, clearly,
p0 ∈ P (B, b, α;F ) for arbitrary admissible values of the parameters b, α and
the set F .

In our further considerations, if it is not otherwise stated, we shall always
assume that B, b, α, F and τ fulfill the conditions from Definition 1.

2. We have

Theorem 1. If P (B, b, α;F ) ̸= ∅, then

(10) 1 ≥ αB + (1 − α)b.

Proof. Let p ∈ P (B, b, α;F ). So, there exists τ = τ(p) ∈ ⟨−π, π) such that (8)
and (9) are fulfilled. Let ω(·;Fτ ) be the harmonic measure of the set Fτ with
respect to D, i.e.

(11) ω(z;Fτ ) =
1

2π

∫ π

−π

χFτ (eit) Re
eit + z

eit − z
dt

where χA is the characteristic function of the set A. Clearly, 0 < ω(z;Fτ ) < 1
in D and, by (3), ω(eit;Fτ ) = 1 a.e. on Fτ and ω(eit;Fτ ) = 0 on T\Fτ . Put

uτ (z) = b + (B − b)ω(z;Fτ ).

Then uτ (z) = B a.e. on Fτ and uτ (z) = b on T\Fτ . Since, by (8) and (9),
Re(p(eiΘ) − uτ (eiΘ)) ≥ 0 a.e. on T, we have, for each z ∈ D, by (2) and (3),

Re p(z) =

∫ π

−π

Re
eit + z

eit − z
dµ(t) ≥ 1

2π

∫ π

−π

Re p(eit) Re
eit + z

eit − z
dt

≥ 1

2π

∫
Fτ

B Re
eit + z

eit − z
dt +

1

2π

∫
T\Fτ

bRe
eit + z

eit − z
dt = uτ (z),

hence

(12) Re p(z) ≥ b + (B − b)ω(z;Fτ ), z ∈ D.

For z = 0, we obtain, with respect to (1) and ω(0;Fτ ) = α, inequality (10).

Remark 1. Inequality (12) corresponds to the well-known two-constant the-
orem for bounded holomorphic functions ([1], p. 39).
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Theorem 2. Let condition (10) hold. Then, for each τ ∈ ⟨−π, π), there
exists a function pFτ ∈ P (B, b, α;F ) such that Re pFτ (eiΘ) = B a.e. on Fτ and
Re pFτ (eiΘ) = b a.e. on T\Fτ .

Proof. Since the disc D is simply connected, therefore the function

(13) h(z;Fτ ) = ω(z;Fτ ) + iω∗(z;Fτ ),

where ω∗, ω∗(0) = 0, is the harmonic conjugate of ω(z;Fτ ) is, by the mon-
odromy principle, holomorphic in D for each τ ∈ ⟨−π, π).

Let the equality in (10) hold. Then

(14) pFτ
(z) = b + (B − b)h(z;Fτ ), z ∈ D,

has the required property.
If Bα + b(1 − α) < 1, then the function p̃Fτ (z) = b + (B − b)h(z;Fτ ), z ∈ D,

fulfills (8) and (9) but does not belong to P (B, b, α;F ) since p̃Fτ
(0) = Bα +

b(1 − α) < 1. So, it is natural to achieve the required normalization by

adding a proper multiple of eiγ+z
eiγ−z , γ real. Since on T we have Re eiγ+z

eiγ−z = 0

a.e., therefore, clearly,

pFτ
(z) = p̃Fτ

(z) + (1 − η)
eiγ + z

eiγ − z
, z ∈ D,

where

(15) η = Bα + b(1 − α),

is the required function.

Corollary 1. The class P (B, b, α;F ) is nonvoid if and only if inequality (10)
holds. If in (10) the equality holds, then

P (B, b, α;F ) = {pFτ ; τ ∈ ⟨−π, π)}

where pFτ is function (14).

Theorem 3. The class P (B, b, α;F ), where B, b, α satisfy condition (10), is
compact in the topology given by the uniform convergence on compact subsets
of D.

Since P (B, b, α;F ) ⊂ P and the class P is compact, it suffices to prove that
P (B, b, α;F ) is closed in P . In the proof of this fact one uses some properties
of the harmonic measure ω(·;F ) of the set F and inequality (12). For details,
see [7].

3. In this section we shall study sets E P (B, b, α;F ) and suppP (B, b, α;F )
of extreme points and support points of P (B, b, α;F ), respectively ([9], p. 44,
p. 91).

For this purpose, we denote, for a fixed τ ∈ ⟨−π, π), P (B, b, α;F, τ) - the
set of all functions from P (B, b, α;F ) satisfying (8) and (9) on Fτ . Clearly,
P (B, b, α;F, τ) is convex, compact and

(16) P (B, b, α;F ) =
∪

τ∈⟨−π,π)

P (B, b, α;F, τ).
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Proposition 1. (i) P (B, b, α;F, τ) = {pFτ + (1 − η)p; p ∈ P} where pFτ is
function (14) and η is given by (15).

(ii) For every τ , the correspondence p → pFτ + (1− η)p between the classes
P and P (B, b, α;F, τ) is one-to-one.

(iii) p ∈ P (B, b, α;F, τ1) if and only if p̃(z) = p(eiτz) ∈ P (B, b, α;F, τ1 + τ).

Now, denote by E(B, b, α;F, τ) the set of all p(z; γ, Fτ ) ∈ P (B, b, α;F, τ) of
the form

(17) p(z; γ, Fτ ) = b + (B − b)(z;Fτ ) + (1 − η)
eiγ + z

eiγ − z
, γ − real, z ∈ D,

and by S(B, b, α;F, τ) the set of all s(z;Fτ ) ∈ P (B, b, α;F, τ) of the form

(18) s(z;Fτ ) = b + (B − b)h(z;Fτ ) + (1 − η)

m∑
k=1

λk
1 + xkz

1 − xkz
, z ∈ D,

where λk ≥ 0,
∑m

k=1 λk = 1 and |xk| = 1; m = 1, 2, . . . .
From Proposition 1, the description of extreme points and support points

of P , given in [9] (p. 48 and p. 94), and from (16) we immediately obtain

Corollary 2. For arbitrary admissible B, b, α, F, τ , we have

(19) EP (B, b, α;F, τ) = E(B, b, α;F, τ),

(20) suppP (B, b, α;F, τ) = S(B, b, α;F, τ),

(21) EP (B, b, α;F ) ⊂
∪

τ∈⟨−π,π)

E(B, b, α;F, τ).

Theorem 4. Let p ∈ P (B, b, α;F ) have expansion (1) in D. Then, for n =
1, 2, . . . ,

(22) |qn| ≤ 2

[
(B − b)

1

2π

∣∣ ∫
F

e−intdt
∣∣ + 1 − η

]
.

This estimate is sharp and is attained only for functions (17) where γ =

− 1
n

(
arg

∫
Fτ

e−intdt + 2kπ
)

, k ∈ Z (for
∫
Fτ

= 0, we put arg
∫
Fτ

= 0).

Proof. Since it is sufficient to verify estimate (22) for extreme points of
P (B, b, α;F ) (see e.g. [9], Th. 4.6, p. 45), by (21) we have only to make
ourselves sure that the estimate holds for all functions of form (17) for all
τ ∈ ⟨−π, π) and is attained on some of them. So, we have only to write the
Taylor expansion of functions (17). Since

eit + z

eit − z
= 1 + 2

∞∑
n=1

e−intzn, z ∈ D,
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and the series converges uniformly in ⟨−π, π⟩ for |z| < ρ < 1, we can integrate
term by term and obtain by elementary calculations (cf. (11), (13), (15),
(17))

p(z; γ, Fτ ) = 1 + 2

∞∑
n=1

[
(B − b)

∫
Fτ

e−intdt + (1 − η)e−inγ

]
zn,

so,

qn = 2

[
(B − b)

1

2π

∫
Fτ

e−intdt + (1 − η)e−inγ

]
.

Denoting φτ = arg
∫
Fτ

e−intdt if
∫
F
e−intdt ̸= 0 and putting φτ = 0 in the

opposite case, we have

qn = 2

[
(B − b)

1

2π

∣∣ ∫
Fτ

e−intdt
∣∣ + (1 − η)e−i(nγ+φτ )

]
eiφτ ,

so,

|qn| = 2
∣∣∣(B − b)

1

2π

∣∣ ∫
Fτ

e−intdt
∣∣ + (1 − η)e−i(nγ+φτ )

∣∣∣
= 2

∣∣∣(B − b)
1

2π

∣∣ ∫
F

e−intdt
∣∣ + (1 − η)e−i(nγ+φτ )

∣∣∣.
Since the first term of the sum is nonnegative, we obtain estimate (22).

Passing suitably to the limits, we obtain from (22) the well-known coeffi-
cient estimates in the classes Pb of Carathéodory (functions ([10]) of order b
and in P ([2]).

4. Next, we consider

Definition 1. Let 0 ≤ b < 1, b < B, 0 < α < 1, be fixed real numbers. Denote
by P (B, b, α) the class of functions p ∈ P such that there exists a closed
subset F of T of Lebesgue measure 2πα such that p ∈ P (B, b, α;F ).

It follows directly from Definition 2 that

(23) P (B, b, α) =
∪
F

P (B, b, α;F )

where F ⊂ T satisfies the conditions mentioned above.
Our main theorem is the following

Theorem 5. Let p ∈ P (B, b, α) have expansion (1) in D. Then, for n =
1, 2, . . .

(24) |qn| ≤ 2

[
B − b

π
sinαπ + 1 − η

]
.

Estimate (24) is sharp and is attained only on the function p∗(z) = p(εz;F ),
|ε| = 1, z ∈ D, where

F = Fn =
n∪

k=1

F k
n , but F k

n =

{
z ∈ T; z = e

2kπi
n eiρ,

−απ

n
≤ ρ ≤ απ

n

}
,
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and so,

(25) p(z;F ) = b +
B − b

2π

n∑
k=1

∫ (α+2k)π/n

(−α+2k)π/n

eit + z

eit − z
dt + (1 − η)

1 + z

1 − z
, z ∈ D.

We give a rough sketch of the proof only; for details, see [7]. Let p ∈
P (B, b, α) have expansion (1) in D. By (22), (23) and in view of the rotation
invariance of the Lebesgue measure on T, we easily obtain

|qn| ≤
B − b

π
Qn + 2(1 − η), n = 1, 2, . . . ,

where

Qn = sup
F

∫
F

cosntdt

and the supremum is taken over all closed subsets F of T having the Lebesgue
measure 2πα. The following lemma is the clue to the proof of Theorem 5
(for the proof of the lemma, see [7]).

Lemma 2. Let a, b ∈ R and let E ⊂ ⟨a, b⟩ be a measurable subset of the
interval ⟨a, b⟩ and f a bounded nondecreasing function on ⟨a, b⟩. Then∫ a+m(E)

a

f(t)dt ≤
∫
E

f(t)dt ≤
∫ b

b−m(E)

f(t)dt.

This lemma is used for the sets F ∩ Ik and F ∩ Jk where Ik and Jk are
intervals, the function cos ine increases or decreases, respectively. After com-
putations one obtains the following estimate of Qn:

Qn ≤ sup

{
2

n

∞∑
n=1

sinnπαk

}
where the supremum is taken over all systems (α1, . . . , αn) such that 0 ≤
αk ≤ min( 1

n , α) and
∑n

k=1 αk = α. Finally, the concavity of sinx on [0, π] gives
result (29).

The form of the extremal functions is a consequence of the form of the set
F shown in Theorem 5 and follows from formula (17). Since P (B, b, α;F1 ∪
F2) = P (B, b, α;F1) for an arbitrary closed set F1 and an arbitrary set F2 of
Lebesgue measure 0 and such that F1 ∪ F2 is closed, therefore, for a fixed n,
only function (25) is the function realizing the maximum of |qn| in the class
P (B, b, α).

From Definition 1 and 2, Lemma 1 and Theorem 5 we get

Corollary 3. Let p ∈ P̃ (B, b;α) have expansion (1) in D. Then, for n =
1, 2, . . . ,

(26) |qn| ≤ 2

[
B − b

π
sinαπ + 1 − η

]
.

Remark 2. Estimate (26) for n = 1 is sharp. For n = 2, 3, . . . , it is not sharp
because function (25) belongs to the class P (B, b, α) but not to P̃ (B, b;α).
The sharp estimate in the class P̃ (B, b;α) for n = 2, 3, . . . is ([6])

|qn| ≤ 2

[
B − b

nπ
| sinnαπ| + 1 − η

]
.

The estimate can also be obtained directly from (22).
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O oszacowaniach wspó lczynników w pewnej klasie funkcji
Carathéodory’ego o cze

‘
ści rzeczywistej dodatniej

Streszczenie. Niech P oznacza znana
‘
klase

‘
funkcji p(z) = 1 + q1z + . . . holo-

morficznych w kole jednostkowym D i spe lniaja
‘
cych warunek Re p(z) > 0 w

D. Niech 0 ≤ b < 1, b < B, 0 < α < 1 be
‘
da

‘
ustalonymi liczbami, zaś F danym

domknie
‘
tym podzbiorem okre

‘
gu jednostkowego T o mierze Lebesgue’a 2πα.

Dla każdego τ ∈ ⟨−π, π) oznaczmy przez Fτ zbiór {ξ ∈ T; e−iτξ ∈ F}.
Niech P̃ (B, b;α) oznacza klase

‘
funkcji p ∈ P spe lniaja

‘
cych warunek: istnieje

τ ∈ ⟨−π, π) takie, że Re p(eiΘ) ≥ B prawie wsze
‘
dzie na Fτ oraz Re p(eiΘ) ≥ b

prawie wsze
‘
dzie na T\Fτ .

W pracy zbadano podstawowe w lasności klasy P̃ (B, b;α). Podano też
oszacowania modu lu wspó lczynników w rodzinie P (B, b, α) =

∪
F P̃ (B, b;α).

Pe lny tekst pracy, w tym pominie
‘
te dowody twierdzeń, ukaże sie

‘
w [7].

Otrzymane wyniki wchodza
‘
w sk lad cyklu prac [4], [5], [6].

Bronis lawów, 11–15 stycznia, 1993 r.


