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Abstract

The jump of Milnor numbers of an isolated singularity fo is the minimal
non-zero difference between the Milnor numbers of fy and one of its defor-
mations (fs). We prove that for the singularities z* + y* + az’y?, where
a € C,a® # 4, of the Xy singularity class the jump of Milnor numbers is
equal to 2.

1 Introduction

Let fo : (C*,0) — (C,0) be an (isolated) singularity, i.e. fo is a germ at 0 of
a holomorphic function having an isolated critical point at 0 € C”, and 0 € C
as the corresponding critical value. More specifically, there exists a representative

fo : U — C of fy, holomorphic in an open neighborhood U of the point 0 € C7,
such that:

1. fo(0) =0,

2. Vo (0) =0,

3. Vfo(z) #0 for z € U\ {0},
where for a holomorphic function f we put Vf := (0f/0z1,...,0f/0zy).
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In the sequel we will identify germs of holomorphic functions with their rep-
resentatives or the corresponding convergent power series. The ring of germs of
holomorphic functions of n variables will be denoted by O™.

A deformation of the singularity fo is the germ of a holomorphic function
f=7(s,2): (CxC"0) — (C,0) such that:

L f(0,2) = fo(2),

2. f(5,0) =0,
3. for each |s| € 1itis V.f (s,2z) # 0 for z # 0 in a (small) neighborhood of
0eC™

The deformation f (s, z) of the singularity fo will also be treated as a family (f;) of
germs, taking fs (z) := f (s,2). In this context, the symbol V f, will always denote
V. fs(z).

Remark. Notice that in the deformation (fs) there can occur in particular smooth
germs, that is germs satisfying V f, (0) # 0.

By the above assumptions it follows that, for every sufficiently small s, one can
define a (finite) number ps as the Milnor number of f,, namely

. n . (0 0
Hs :H(fs) :dlmCO /(vfs) =1 <82‘i7762{7,> )
where the symbol i (%, cee %) denotes the multiplicity of the ideal (ngi yeens
of n
2 o,

Since the Milnor number is upper semi-continuous in families of singularities
[GLS07, Ch. I, Thm. 2.6], there exists an open neighborhood S of the point 0 € C
such that

1. ps = const. for s € S\ {0},
2. o = ps for s € S.

The (constant) difference pg — ps for s € S\ {0} will be called the jump of the
deformation (fs) and denoted by A ((fs)). The smallest nonzero value among all the
jumps of deformations of the singularity fy will be called the jump of the singularity
fo and denoted by A (fo).

The first general result concerning the problem of computation of the jump
was given by S. Gusein-Zade [Gus93], who proved that there exist singularities
fo for which A(fo) > 1. He showed that a generic element in some classes of
singularities (satisfying conditions concerning the Milnor numbers and modality)
fulfills A (fo) > 1, but he didn’t give any particular example of such a singularity.

The two-dimensional version of the problem of computation of the jump, and
more precisely — of the non-degenerate jump (i.e. all the families (f5) being con-
sidered are to be made of Kouchnirenko non-degenerate singularities), has been
studied in the following papers: [Bod07], [Wal08], [Wal09], [Wal10], [Wal12].
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The following are example singularities that fulfill the assumptions of the Gusein-
Zade theorem.

1. % + y* — a singularity of modality 1. Corresponding to it is the class of
singularities with constant Milnor number and of modality 1, namely

et +yt tax’y?, d®#£4, p. =9
It is the class Xg in the terminology of [AGV85].

2. a* + y% — a singularity of modality 2. Corresponding to it is the class of
singularities with constant Milnor number and of modality 2, namely

ot S+ (a+by)2%y®, a® #4,  pae = 15.
It is the class Wi ¢ in the terminology of [AGV85].

3. 23 + 9° — a singularity of modality 2. Corresponding to it is the class of
singularities with constant Milnor number and of modality 2, namely

22 +y +az?y® + bxy”, 4a® +27#0, e = 16.
It is the class J3 o in the terminology of [AGV85].

What one can conclude is that generic elements f of the classes Xg, Wi, J35,0
mentioned above satisfy A (f) > 1. However, determining the jump of any partic-
ular element of these classes is still an open problem and in fact Gusein-Zade did
not give any specific example of a singularity f with A (f) > 1. The purpose of this
work is to prove that for the singularities fy in the Xg class

fo (37’1/) =z +y4 + GZUQZUQ: ac ®7a2 # 4,
it is
A(fo) =2

(and that therefore all the singularities of the class Xy are “generic” in the family
Xy) and for the following singularities in the W o class

fo(z,y) =a* +y5 +b2*y*, beC
it is
/\(fo) =1

(and that therefore these singularities are not “generic” in the family W o).

We also pose some open problems:

1. Show that for the remaining singularities in the W, ¢ class, i.e. for the sin-
gularities f(*? := z* + 45 + (a + by) 2>y*, where a,b € C,0 # a® # 4, it is
A (flad) =2,

2. Compute the jumps for the singularities f(**) in the class Js,0 with respect
to the parameters a, b.
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2 Introductory Facts

In this section we review briefly the notion of non-degeneration of singularity and
the known theorems of Kouchnirenko and Ptoski on the Milnor numbers of non-
degenerate singularities, as well as Bodin’s results about the non-degenerate jumps
of singularities. Here we restrict ourselves to considering the two-dimensional case,
as that is what will be needed in the sequel. However, at the end of the section there
is also discussed the notion of a versal unfolding, and the fundamental theorem on
it is given, and we work in n—dimensions in this context.

In the following we define IN to be the set of nonnegative integers, and R will
denote the set of nonnegative real numbers. Let fy (z,y) = E(i’j)eNg a;7'y? be a
singularity. Let supp (fo) := {(i,j) € N* : a;; # 0}. The Newton Diagram of fo is
defined as the convex hull of the set

U GH+R3

(i,3)€supp(fo)

and is denoted by ', (fo). It is easy to see that the boundary (in R?) of the diagram
T+ (fo) is a sum of two half-lines and a finite number of compact line segments (a
degenerate case of no segments included). The set of those line segments will be
called a Newton Polygon of the singularity fo and denoted by T'(fg). For each
segment v € ' (fo) we define a weighted homogenous polynomial

(fo)y = Z aijl'iyj-
(i.3)€r

A singularity fo is called non-degenerate (in the Kouchnirenko sense) on a
segment v € T' (fo) iff the system

2(fo),
Or

0
(z.y) =0 = (afy) (z,9)

has no solutions in C* x C*. fy is called non-degenerate iff it is non-degenerate on
every segment v € T (fo).

For the sake of simplicity, we state the Kouchnirenko and Ptoski Theorems only
in the case of convenient singularities fg, i.e. we demand T (fp) to intersect both
coordinate axes Ox, Oy of R2. For such singularities we denote by A the area of
the domain bounded by the coordinate axes and the Newton Polygon I' (fo), while
a, (resp. b) are: the distance of the point (0,0) to the intersection of 'y (fo) with
the Ox (resp. Oy) axis. The number

v(fo):=2A—-a—-b+1

is called the Newton Number of the singularity fo. The following famous fact holds.
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Theorem 1 (Kouchnirenko, [Kou76]) For a convenient singularity fo it is:

1. p(fo) = v(fo),
2. if fo is non-degenerate then u(fo) = v(fo).

Theorem 1 can be strengthen in the following way.

Theorem 2 (Ploski, [Plo90, P1099]) If for a convenient singularity fo it is
v(fo) = u(fo) then fo is non-degenerate.

Remark. Under a suitable definition of the number v (fy), theorem 1 is also
valid in the n—dimensional case. However, the theorem of Ploski is a purely 2—
dimensional phenomenon; a suitable 3—dimensional example of a degenerate singu-
larity fo for which v(fo) = u(fo) was given in [Kou76, Remarque 1.21].

For a singularity fo we can consider non-degenerate deformations of fq, that
is such deformations (fs) of fo, that for small |s| # 0 the singularity fs is non-
degenerate. Then the smallest nonzero value among all the jumps of non-degenerate
deformations of the singularity fo (cf. Section 1) will be called the non-degenerate
jump of the singularity fo and denoted by A" (fo). In another words,

And (fo) :==min ({A ((fs)) : (fs) — a non-degenerate deformation of fo}\ {0}).

It turns out that this restricted jump of a singularity is possible to be determined
in some important general cases using only elementary geometric-combinatorial
methods. Namely, A. Bodin in [Bod07] (see also [Wal08], [Wal09], [Wal10], [Wal12]
for a more complete exposition and some generalizations) managed to compute
A" (fo) in the case of convenient singularities fo whose Newton Polygon is built

of only one segment. Let, more precisely, T'(fy) = {(a,O) (0, b)} and let us put
d := ged (@, b). Then:

Theorem 3 (Bodin, [Bod07]) Under the above assumptions and notations,
a) if d < min (a,b) then \" (fy) =d
b) if d = min (a,b) then A" (fo) =d — 1.

The rest of the section is devoted mainly to the concept of a versal unfolding.
It is based on the book by Ebeling [Ebe07]. Since we are not interested in the
“semi-local” case, we adopt the definitions and the main result on versal unfoldings
([Ebe07, Prop. 3.17]) to the local situation.

Let fo : (C™,0) — (C,0) be a germ of a holomorphic function. An wunfolding
of fo is a holomorphic germ F : ((D” X (Dk,O) — (C,0) such that F (2,0) = fo (2)
and F (0,u) = 0.

Two unfoldings F : (C™ x C*,0) — (C,0) and G : (C" x C*,0) — (C,0) of
fo are said to be equivalent, if there exists a holomorphic map-germ

¢ (C" x C*,0) = (€",0), (2,0 =z ¢ (0,u)=0
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such that
G (z,u) = F (¢ (z,u),u).

It is easy to see that this notion of equivalence is in fact an equivalence relation in
the set of unfoldings of fy.
Let F': ((D” X (Dk,O) — (C,0) be an unfolding of f, and ¢ : ((DI,O) — ((Dk,O)
— a holomorphic map-germ. The unfolding of fy induced from F by ¢ is defined by
the formula
G (z,u) = F(z,¢(u)).

An unfolding F : (C" x C*,0) — (C,0) of fo is called versal if any unfolding of
fo is equivalent to one induced from F'.
The following proposition will be useful.

Proposition 1 ([Mar82, Ch. 4, Prop. 2.4]) If f € O™ is an isolated singular-
ity, m is the mazimal ideal in O™, then
n n

=dimg ———— +n.

dme L on (v /) On

The main result concerning versal unfoldings is the following.

Theorem 4 Let fy : (C*,0) — (C,0) be a singularity and put p = u(fo). Let
Gis-->9ut+n—1 € O be any representatives of a basis of the C—vector space m(%‘fo) ,

where m is the mazimal ideal in O™. Then the holomorphic germ

F:(C"x Cc**t=10) — (C,0)
defined as

F(z,u) :==u191 (2) + - .. + Upgn-19utn—1 (2) + fo (2)
is a versal unfolding of fy.

Remark. The proof of the above theorem runs in a very similar way to that given
by Ebeling ([Ebe07, Prop. 3.17]; see also [Wal81, Thm. 3.4] for a more general, but
less explicit, approach to the concept of a versal unfolding and a proof of Theorem
4).

Let f : (C™,0) = (C,0),9 : (C™,0) = (C,0) be two germs of holomorphic
functions. We say that f is stably equivalent to g (see [AGVS85]) iff there exists
p € N, p > max (m,n) such that

2

f@y, .z +ah g+~ gL Um) F Yo + -+ U

bih.
equiv.

We note the following.

Proposition 2 The jump of a singularity is an invariant of the stable equivalence.
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Proof. It is known, that the Milnor number is an invariant of stable equivalence.
In particular, it easily follows that A is a biholomorphic invariant. Thus, it suffices

to prove that for a singularity fo : (C”,0) — (C,0) and any it is
Afo(xr, o oymn)) =A(fo(@e,. .o an) v ahy +...+ ).
First note, that if (fs) is a deformation of fo then the family
(fs (@1, mp) + a2y +...+;v12))

is a deformation of fo (1,...,%,) + miH + ...+ xﬁ and by the above property of
the Milnor number it is

)‘((fs (mla---axn))) :/\((fs (mla---axn)+xi+1+---+$127)).

It follows that A (fo («1,...,2n)) = A (fo (z1,...,xn) + a5y, + ... +x2). We will
prove that the opposite inequality also holds.
Let z := (z1,...,zp) and ¢’ := (z1,...,z,). Put

[go(@):=fol)+al  +... +27 |

Take any deformation (gs) of the singularity go. One can assume that u(gs) <
1 (go) and p(gs) # 0, i.e. the germs g; are not smooth, for small |s| # 0. By
Theorem 4, as a versal deformation of fy one can take

F(z' u) == urhy (') + ...+ Upgpn—1hpsn—1 (') + fo (2'),

where p := p(fo) and hi,...,hy4n—1 € O™ constitute a basis of W, m,
denoting the maximal ideal of O™. Let, similarly, m, denote the maximal ideal of
OP > O™. Tt is easy to see that

(M + (Zng1,---,2p) C) O™ +my - (Vfo, Tpyt, .-, 2p) OF =my,.
It follows that (the classes of) the elements of the set

Bi=Ah,...,hytn-1,Tpt1,-. ., Tp}

my

span the C-linear space e A S—T T But (Vfo,Zpt1,--,%p) 0p = (V0) op -
By Proposition 1, the set B is a basis of m&“% since card B = p+p—1and p =
w(fo) = u(go) = dimg %. Thus the germ G : (C? x C*P~10) — (C,0)
given by

G (z,v) == v1hy (") +. .+ Vpgn_1hpin—1 (&) +0pin@ng1 +- .-+ Vprp_12p+go (2)

is a versal unfolding of go. It means that for the deformation (gs) one can find a
holomorphic map-germ ¢ : (C,0) = (C#*P=',0) such that

5.() ~ Glp(),

equiv.
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for every small enough |s| # 0. But then p (gs) = (G (-, » (8))) and since G (,) =

s
G (-, (s)) is a deformation of go, also [ A ((gs)) = X ((G,, )) Now, we assumed
that the g,’es were not smooth, so it has to be ¢, = ... = ¢, 1 =0€ O or
in another words

Gos) (@) = @1 (8)ha(2') + oo+ Quin1(8) hyyn1 (2) + go (2) -

Putting

hs (2) := @1 (s) ha (&) + - + Ppugn—1 (5) hugn—r (&) + fo (')

we have Gy (2) — hs (z) = 22,1 + ...+ 22, and so pu (Gy(s)) = p (hs), for small
|s| # 0. Since (hs) is a deformation of fo and 1(go) = 1 (fo), it is A ((Gy(s))) =
A((hs)). Thus A((gs)) = A((hs)) and A(go) = A (fo). The proof is finished. O

3 Main Results

Since showing that A (;174 +y% + bx2y4) = 1 is much easier than proving that
A (;1:4 +yt + am2y2) = 2, we first address the first problem.

Theorem 5 For the singularities fo (z,y) = z* + y® + bx*y*, where b € C, it is
A(fo) =1,
In particular, A (354 + y6) =1.

Proof. Fix any b € C. Since fy is Kouchnirenko non-degenerate, it follows that
i (fo) = 15. Consider the following deformation of fjy:

Folrg) = 5 P v o) b

The deformation consists of degenerate singularities (for s # 0). Apply the follow-
ing change of coordinates: z + x — sy?,y — sy. In this coordinates the f,’es take
the form

fs (z,y) = 223+ (s +bs%)y® + [2* — 4s2®y? + (657 + bsh)2?y* — (45 + 2bs%)zyf] .

It is immediately seen that for s # 0 the singularities f, are non-degenerate and so

7 ( fs) = 14.
Since the Milnor number is an invariant of a singularity, it is also
p(fs) =14.

It means that for this particular deformation (fs) it is A ((fs)) = 1. Therefore also
A(fo) =1, by the definition of the jump of a singularity. O
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Remark. Theorem 3 (see also [Wall0, Corollary 2|) implies that for the above
singularities fy their non-degenerate jumps are equal to 2.

We now present the proof of the main result of this work, namely that A (z* + y*
+az*y?) = 2. The proof, in part, was strongly supported by symbolic calculations
(in the computer algebra system MAPLE).

Theorem 6 For the singularities
(1) fo(z,y) = a* +y* + az®y’,

where a € C,a? # 4, it is

A(fo) =2
Thus for every singularity of type Xg its jump is equal to 2.

First we state and prove two lemmas.

Lemma 1 As a basis of the C-vector space m/ m(V fy), where m is the mazimal
ideal in O?, one can take the (classes of the) monomials z'y’ with 0 < i+ j < 3
and the monomial zy?.

Proof of Lemma 1. Let us note that Vfy (z,y) = (42° + 2azy?, 4y® + 2a2?y)
and z°, 23y € m (Vfo) in O2. Indeed, it is easy to check that

and
Since fy is symmetric with respect to z and y, also y°,zy® € m(Vfy). Thus it

is possible to depict the monomials that are potentially nonzero in m/ m (V fy) as
follows:




18

We claim that the set B of the classes of the black points constitutes a basis of the C-

linear space m/ m(Vfy). To see this, it is enough to mnote that
y* = —%2?y? (mod mV fy), which means that y* € ling B and by symmetry —

also 2% € ling B. Thus ling B = m/ m(Vfy). Since p(fo) = dime O?/ (Vfo) = 9
and by Proposition 1 it is dimgm/ m(V fo) = 10 = card B, the set B is also linearly
independent. g

Lemma 2 For any complex numbers ¢, 0, ¢, f, g, h with b # 0 the isolated singularity
S of the form

(2) F(@,y) = (@ +9%)" +® +ox?y + ex’y + fa?y® + gry’ + hat
has its Milnor number less than 8.

Proof of Lemma 2. Suppose that there exist complex numbers ¢, 9, ¢, f, g, h such
that h # 0 and the isolated singularity § of the form (2) fulfills u(F) > 8. We
compute the derivatives:

0

(3) £ (@,y) = 2(z+1?) +3c® + 2wy + 3ea?y + 2wy’ + gy + 4ha
a . P ‘

(4) (Tg (z,y) = 4y (z+y?) +02° + ez’ + 2§27y + 3gzy”.

Since ord, % = 1, it is possible to express the solution to the equation % (y)=0
as a function of y, namely g—f (¢ (y),y) = 0 for the uniquely determined germ .
Moreover, by the parametric definition of intersection multiplicity we have

) 8 < u(®) = inl5o, 52) =ordy 3 (0 (0).0).

Using (3) it is not hard to check that ¢ is of the following form

1 1
(6) P ) =—y" 5 (a-20)y" + 5 (09— 2% +2f = 3c)y" + ... .
Taking into account (4) we conclude that the chunk of ¢ computed above allows
us to correctly determine the terms of g—‘z (¢ (y),y) up to order 5 and (5) implies
that these terms have to be equal to zero. Thus, substituting (6) into (4) and
expanding, we arrive at

_ %

= oy (¢ (y),y) =—5(g — 0)y4+§ (—g” + 40g — 40% + 4f — 4c) y°+0 (3°) .

0 (v°) 5

The corresponding system of equations easily leads to the following unique set of
relations:

(7) [0=g,c=(4f—¢*). |
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Now we substitute (7) into (3) and (4):
%

1. ‘ ‘
(8) O (z,y) = 2(z+y°) +3(— 192)302 + 2gzy + 3ex’y + 2fxy® +
+ay° + 4ha®
a .
(9) a% (@,y) = dy(z+y°) +o2” + ea® +2f2%y + 3gay”

and we compute the approximation of the expansion of ¢ a bit further:

1 1, . 1
(10) ) =-y*+ 509" — g(¢® +4f)y" — 7 (¢° —6fa+6¢)y" +... .

Substlituting (10) into (9) we can find the expansion of % (¢ (y),y) up to order 6,
namely

0(y*) = 08 (o)) = — L (a° — 4fa + 8)y° + O (v7).

=3 2
The above equation leads to
(11) [e=504i—g°). |
Using the relation (11) in (8) and (9) we get:
o 3 . 3
55 (@) = 2(e+y?) + (4 - ")’ + 20wy + Ca(4f - 0%)27y +
+2fzy” + gy° + 4ha’
0% 1
(12) F (@) = 4y (z +7) +92° + S0(4 — g°)a” + 2fa”y + 3gzy”

and then we compute the next term of ¢, obtaining

1 1 1
py) = -y + 50— o(0° +4f)y" - pa(e® —120)y7 +
1
(13) +1g (0" — 476 — 167 +320) y° + ... .

One last time we compute the approximation of ‘g—‘z (¢ (y),y), this time using (13)
in (12):

b 1
0(y’) = 5 (9 () ,v) = —5(a" — 8fa° + 16§ — 64h)y” + O (4°) .

The above equation implies the following
(14) [b=gg0" — 5i0° + 11" = g (41 — ¢°)* ]
Putting we can sum up the relations (7), (11) and (14) as

(15) [0=g,c=7i,e = zgi,h = g;i’. |
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Thus, written in terms of i and g, § takes the form

‘ 1 1 1. . 1.
Flay) = (z+97) + 1107 + 92’y + gain’y + S (i+ 8%)a%y’ + gay’ + it
1 .
= 6—4(8(96 +9%) +iz? + 4gzy)?
which is impossible, since § is an isolated singularity. The lemma is proved. d

Remark. By analyzing the proof of Lemma 2 and using Ploski Theorem, one can
conclude that the singularities of the form (2) can have their Milnor numbers equal
only to 4,5,6 or 7.

Proof of Theorem 6. First note that it is enough to compute A (fg) for fo of the
form (1), or in another words for singularities being given in the normal form for
the class Xy (cf. [AGV85]), because — by Proposition 2 — the jump is an invariant
of stable equivalence and each singularity of the family Xjg is stably equivalent to
one of the form (1).

Let us fix a € C,a® # 4. We easily check that p(fo) = 9. Let us consider the
deformation

[ fs (2,y) = 2"+ (y° + 52)° + a2’ (y° + s2). |

As was the case with Theorem 5, we apply now the change of coordinates:
z = x — sy, y— sy, for s # 0. In this coordinates the f,’es take the form

fs (z,y) = 22 +as®zy* + sy +asz® +2* —2as’ 2%y —4s2y? + 6522 y* — 45> 2y5].

It is easily seen that such f,’es are non-degenerate if s # 0 and a # £2. Thus, by
Kouchnirenko theorem, it is u (fs) = v (fs) = 7 and so also

(16) u(fs) =7 for s #0.

It means that A\ ((fs)) = 2 and therefore A (fy) < 2. By the definition of the jump
of a singularity, there are only two cases: A (fo) =1 or A (fo) = 2. We will exclude
the first possibility.

Suppose to the contrary, that there exists a deformation (fs) of the singularity
fo with the property that

(17) [ u(fs) =8 for s #0. |

By Theorem 4 it is possible to write the versal unfolding of fy as

fo (@,y) = s10%+ 501y + 5202” + 5117y + 02y + s307° + $212°Y + s127Y” +
+503y° + s222%y% + fo (2,9)

and there exists a holomorphic mapping & = (sio,...,s2) : (C,0) — (C'°,0)

such that for every small enough |s| # 0 it is

fs ~ f@(s)-

bih.
equiv.
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It implies that p(fs) = p (fe(s)) and so in the following we may assume that
fs = fe(s)- Since pu(fs) =8 # 0 for s # 0 then the germs f, are not smooth. It
follows that ord fs > 2 and that gives sjgz + sp1y = 0 or s19 = sg1 = 0. Thus we
have

(18) fo (x,y) = s202” + s112y + s02y” + s302° + 2127y + s127y” + s03y° +
+822‘T2y2 + fO ("17, y) )
where s;; (0) = 0.
From Theorem 3 it follows that the f;’es have to be degenerate for small |s| # 0,

so we can assume that this is the case for all f,;, s # 0. However, the singularity
fo is non-degenerate and so we conclude by Ploski theorem 2 that it has to be

(19) ord fs < 4.

Thus we will distinguish two cases: ord fy = 3 and ord f; = 2. What is more, in
the rest of the reasoning’ we choose and keep fixed any sufficiently small sy # 0 ‘

I. ord f;, = 3. That means we can write
oo (,9) = 8302° + 52127y + s1205” + 5039” + (522 + @) 27y + 2 + ¢/,

with s;; = s;; (so) € C. There are several options for the Newton diagram
of fs,. However, f;, has to be degenerate, so the possibilities can be reduced
to the following (the white point is optional, at least one of the grey points
has to appear as a vertex of the diagram, and the black points are obligatory):

We will treat the above possibilities simultaneously. Namely, one can write
them down in the following way

fso (@,y) = (az + By)? (Yo + 8y) + (522 + @) 2°y* + 2" + 3",

where «, 3,7,0 € C with aff # 0 and (v,6) # (0,0). Next we change the
coordinates: z +— £,y % and after that f,, takes the form

f 2 .
fso (,y) = (z +9)” (ez + Cy) + pz’y” + oz* + 1y,
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II.

where o7 # 0 and ¢, # (0,0). We change the coordinates ones again:
T +— T —y,y — y to obtain

fso(@y) = ea’+(—e+Qya® +ox' —doya® + (p+60)y’a* +
—2(p+20) iz +(c+p+1)yt
Since ord st = 3, the Newton diagram of st is of one of the following forms

(in each image the white point is optional, exactly one of the grey points has
to appear as a vertex of the diagram, and the black points are obligatory):

N N
2 \\\ 2 \\\ Z \§
A} A}
1 T L r T \y
AN
AY
0 1 2 3 0 1 2 3\ﬁ 0 1 2 3 E

In each of the above situations however, fio is easily seen to be non-degenerate
and 1u(fa) = v(fso) < 7. Thus u(fs,) < 7, contradictory to (17).

ord fs, = 2. Consider subcases

1. fs, is a reducible germ, or in another words we can write
fso =F'f", ordf =ordf"=1.

Using the classical formula for the Milnor number of the product of two
singularities (see e.g. [Cas00, Prop. 6.4.4]) we compute

8 = u(fso) =) =p(f)+2u(f f)+n(f)-1=
= 2:“’(flaf”)_la
which is impossible, u (f', f"') being an integer.

2. fs, is an irreducible germ. Since it is also a degenerate germ, it has to be
of one of the following forms (cf. (18)):

i. fs (2,y) = (az + By)® + higher order terms, « # 0,8 # 0,
ii. fs, (z,9) = (am + y2)2 + higher (weighted) order terms, « # 0,
iil. fs (z,9) = (2 + ﬂy)2 + higher (weighted) order terms, [ # 0.

More precisely, after taking (18) into account, one can sketch the Newton
diagrams of f5, in each of the above cases, respectively as follows
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0123\F

Case (i) Case (ii) Case (iii)

Let us consider the case (i). Using (18) we can write

fso (m,y) = (az+ /31/)2 + 8302° + 82127y + s122Y> + s03y° +
+ (592 + a) 2%y + 2 + ¢,

where a, f € C* and s;; = sij (so) € C. If so, we have
. 6 2
(20) fso (xy) = o (x + ay) + $302° + 59127y + S22y’ +
+503y° + (822 + a) 22y? + 2t + y*,

and performing the change of coordinates £ : x — x — gy,y — Yy we are
led to

foo (@,9) = (fso 0 L) (z,y) = a’z? + middle terms + z* +

(21) + <1+(822+a) (§)2+ (§)4> S

The possible Newton diagrams of fso can be depicted as follows (the white
points are optional, at least one of the grey points has to appear as a vertex
of the diagram, and the black points are obligatory)

so, by Kouchnirenko theorem, st has to be degenerate in order that
u(st) = 8 (otherwise ,u(st) = I/(st) < 5 = v(2? +2y®) by the
monotonicity of the Newton number with respect to Newton diagrams; cf.
[Gwo08] or [Len08, Prop. 6.1]). But f;, being degenerate implies that in
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fact there is only one possibility for the shape of st, namely (look at (21)
and the figure above)

(22) fs, (2,y) = (az + Byz)2 +Cz® + D2’y + Ex’y+ Fxy? + Gay® + 24,

where a,...,G € C and | a« # 0 # B | We change the coordinates as fol-

lows: = £,y %’ wherev/B € C is a square root of B € C. In these

new coordinates f,, takes the form
Beo (@,9) = (& +12)” + ca® + 02y + exy + juy® + gy’ + b,

where , and so Lemma 2 applies to §s,. As a consequence,
8 > u(8s,) = p(fs), which is contradictory to (17). This proves that

the case (i) cannot happen.

Now we consider the second case. We see at once that if f;, is of the form
(i), it is in particular of the form (22) because a # 0. It means that the
reasoning carried on above for f, applies also to fs, of the form (ii) and
so the case (ii) cannot happen.

The third case is immediately excluded by the symmetry of the indetermi-
nates  and y in fy.

Summing up, fs, cannot be an irreducible germ which means that (IT) does
not take place and thus ord fs, # 2.

Since we have proved that f; is neither of order 2 nor 3 and these are the only valid
possibilities by (19), we arrive at a contradiction and thus we conclude that there
is no deformation (fs) of fq satisfying (17). On the other hand, we have indicated
a deformation of fy with its jump equal to 2 (see (16)). By the definition of the
jump of a singularity, the above means that A (fo) = 2. The proof is finished. O
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Skok liczb Milnora w klasie osobliwosci Xy

Streszczenie. Skok liczb Milnora osobliwosci izolowanej fo to minimalna z nie-
zerowych rdznic pomiedzy liczbami Milnora osobliwosci fo i jej deformacji (fs).
Dowodzimy, ze dla osobliwosci * +y* + ax*y?, gdzie a € C,a® # 4, z klasy Xy ich
skok jest rowny 2.
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