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— N:={1,2,...}, Ng:=NU{0}

— Letn>2. Forfe Cllzts - 2]l £(0) =0, f = ¥,y @i ', where
7=z} -...-z"is the usual multi-index notation, we define:

— Supp f:={i:a;#0} CR", the support of f,
— T4 (f):=conv(Supp f) + RY,, the Newton polyhedron of f

— T'o(f):=the union of the compact faces of I',.(f), called the Newton
diagram of f,

— T'_(f):=the union of all the segments joining the origin 0 € R" with
a point of I'y( f).

Additionally, for f a polynomial, the set NP(f) := conv(Supp f) is
called the Newton polygon of f.

— fe€Cllzy,...,z,]] is convenient if I'y( f) touches every coordinate axis.
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Letf==(y6+x2y2—2x3y+x4)—2xy5+x2y4—3x6y4—27”ix8.
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The Milnor number in the generic case

Let us recall

Let f: (C",0) — (C,0) be a holomorphic germ. The Milnor number
A8 C[]
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Problem. Can the value of the Milnor number of a germ f be computed
combinatorically from the Newton diagram of f, if f is ,,non-degenerate”
1n some sense?

A positive answer to this question was given by A. G. Kouchnirenko.




Kouchnirenko's non-degeneracy condition

Let f:(C",0) = (C,0) be a holomorphic germ, f=)_. enn i 7. For any
vector vEN" let S, denote the face of I'y( f) supported by v. We define
the initial form of f with respect to v as in,f:= ) ._ S, a7,

o

We say that f 1s Kouchnirenko non-degenerate on a face S, of
[o(f) if the system

{Vin,f=0}= { omef_ ainvfzo}

aZ1 aZn

has no solutions in (C*)", where C*:=C~ {0}.

We say that f 1s Kouchnirenko non-degenerate, if f 1s Kouch-
nirenko non-degenerate on every face S, of its Newton diagram.




The theorem of Kouchnirenko. Basic version

The basic version of Kouchnirenko theorem can be stated as follows:

Theorem 1 (Kouchnirenko '76)

Iff:(C",0)— (C,0) is convenient, then:

Lpu(f)Zv(f),
2. if fis Kouchnirenko non-degenerate, then u(f)=v(f) < oo.

Moreover, the above non-degeneracy is ,,generic” in the space of
all holomorphic germs g satisfying I'o(g) =To(f).

Here, v( f) is the combinatorial Newton number given by the formula

V(f) = ZIC{I,...,n} (_l)n_m ’ ‘I‘! 'VOIII\(F—(][) N RI),

where we put K := {xeK"x;=0fori¢Z}, K=RvC.



The theorem of Kouchnirenko. Extended version

The previous result can be generalized to the case of non-convenient germs.

This was remarked by Kouchnirenko and rigorously proved by Brzostowski and
Oleksik.

Theorem 2 (B.—Oleksik)

Iff:(C",0)— (C,0) and v(f) < oo, then:
L pu(f)Zu(f),
2. if fis Kouchnirenko non-degenerate, then u(f)=v(f).

Moreover, the above non-degeneracy is ,,generic” in the space of all
holomorphic germs g satisfying I'o(g) =To(f).

Here, the definition of the Newton number 1s extended to the ,,non-convenient
case” by the formula

V(f)=suprent(f + X1 cicnl)-
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— In the 2—dimensional case Kouchnirenko's result 1s sharp, that 1s
any germ f (convenient or not) satisfying u(f) =v(f) has to be
Kouchnirenko non-degenerate (Kouchnirenko 76, Ptoski '99).

— If n > 3 this i1s not the case. Here is the example provided by
Kouchnirenko himself:
Consider f:=(x+y)?>+xz+z°. Then f is Kouch-
nirenko degenerate with respect to the vector v:=
(1,1,2): the system {Vin,f =0} ={V(x+y)*=
0} possesses solutions in (C*)°. Nevertheless,

v(f)=pn(f)=1.

How to make the Kouchnirenko theorem a sharp one?




Local Bernstein's and Mondal's non-degeneracies

— Let fi, ..., fu € Cllz1, ..., 74]], m = n. We say that (fi, ..., fi) is
Bernstein non-degenerate at O if for every v € N" the system

{in,fi=...=in,f,,=0}

doesn't have solutions in (C*)".

— Letm=n. We say that (f1,..., f,) is Mondal non-degenerate if for
all @ #7Z c{l1,...,n} the tuple (filcz, ..., fulcz) is Bernstein non-
degenerate at 0.
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— Mondal's non-degeneracy for gradients 1s in general weaker than
Kouchnirenko's:

Consider again f:=(x+y)*+xz+2z>. We have
Vi=2x+2y+22x+2y,x+27).

As before take the vector v:= (1, 1, 2): the system
{mvgf—mvaf—mvaf }={2x+2y=x=0} has

got no solutions in (C*)?. The same thing can be
checked for all other vectors v € N". Hence, V[ 1s
Bernstein at 0 (also Mondal) non-degenerate.




The Kouchnirenko-Mondal theorem

Since we are working over C, Mondal's result can be stated as this:

Theorem 3 (Mondal)

Letf:(C",0)— (C,0). Assume that v(f)<oo. The f.s.a.e.:

1. V fis Mondal non-degenerate,
2. u(f)=v(f).

Commentary

Actually, P. Mondal assumes that f € C|z, ..., z,], not f € Cl[zy, ..., 2,]].
This seemingly weaker result implies the above one as follows:

— if geClzy,...,z,] is a ,,partial sum” approximating f, so that in partic-
ular ord(f—g)=N and N> 0, then pu(g)=u(f),

— Vg and V[ are both Mondal (non-)degenerate and v(g) =v(f).



Genericness of Kouchnirenko's non-degeneracy 12/20

Lemma 1 (cf. Kouchnirenko '76)

Letf €Clzy, ..., 2,), f(0)=0, and let 7 be a monomial, k € Nj~ {0}.
Assume that Supp f U {k} is contained in a hyperplane of R" with
normal vector l= (11, ...,1,) EN". Then for almost all choices of s C

the function g:= f +s-Z* is quasihomogeneous with weights | and the
system {Vg=0} has no solutions in (C*)".

A direct consequence of the above lemma is:

Corollary 1

Letf:(C",0)— (C,0) and let Z* be a monomial, k eN{~{0}. Then for
almost all choices of s € C the function g:= f +s-7° is Kouchnirenko
non-degenerate on all these faces of its Newton diagram which con-

tain the point k. In particular, if f is Kouchnirenko non-degenerate,
so is g, at least generically.



Genericness of Kouchnirenko's non-degeneracy. Proof 1320

Proof of Lemma

— Clearly, g 1s quasthomogeneous with weights / regardless of the value

of s € C. By substituting z — (z}, ..., Z"), we may assume that g (and
f) 1s homogeneous.

— Put: x:=(ky,...,k,-1,0), d:=degg. Then d >0, and we have

h(Z) ::g(,ZlZ'KZn,.”’ZnZl L n) (Zn)d (Zlaﬂ-azlcfll—l’l):(%)d'(f(zcll’“-a

d-k d-k_
Zots 1) +s-28 ™25

where h, p €C|z, 7=

=20 (p(21,...,20-1) +5);
~1] and p does not depend on z,.

It 1s easy to see that the systems {Vg—O} and {VA=0} are equivalent
in (C*)". But {Vh= O}@{aZI =p+s5s=0}.

azn_

By Bertini-Sard theorem applied to p we get the assertion of the
lemma.



The nature of Mondal's non-degeneracy for singularities 1420

For 1solated singularities we can weaken Mondal's non-degeneracy
condition:

Letf:(C",0)— (C,0) be an isolated singularity. The f.s.a.e.:

1. V fis Bernstein non-degenerate at 0,

2. Vfis Mondal non-degenerate,
3. u(f)=v(f)-

—  We will prove this theorem indirectly, using P. Mondal's results.

— By Theorem 3, and since ,,(2) = (1)” is trivial, we only need to
show ,,(1)=(3)”.



The nature of Mondal's non-degeneracy for singularities. Proof 152

Let us first note the following

Iffi,.... fn€Cllzi, ..., 24|, are all convenient, then (fi, ..., f,) are
Bernstein non-degenerate at 0 iff they are Mondal non-degenerate.

Proof of the lemma

»=". Take any @ #Z C {1, ..., n}. Without loss of generality, we may
assume that 7 = {1, ..., p}, p <n. Take any v = (vy, ..., v,) € NP,
Put vy, := (vi, ..., v, N, ..., N) € N", where N > 0. By assumption,

filez=fi(z1,-..,25,0,...,0)#0 (i=1,...,n). Hence, in, (fi|cz) =in,_ f;
fori=1,...,n. This means that the system {in, (fi[cz) =0}, c;<, has no

solutions in (C*)" and — consequently — no solutions in (C*)Z.

,,<="". Trivial.



The nature of Mondal's non-degeneracy for singularities. Proof 162

Proof of implication ,, >’ of the theorem

— Assume that Vf is Bernstein non-degenerate at 0. Consider g(z):=
f(z)+a(z), where a(z) is a generic enough form of degree N>>0. Then
u(g)=u(f)<oo. By Corollary 1, Vg is Bernstein non-degenerate at 0.

5 0 5
— Since we may assume that all the a_f. are convenient, Lemma 2 asserts

that Vg is Mondal non-degenerate. For the same reason, v(g) < co.
Hence, Theorem 3 gives the equality u(g) = v(g). Consequently,

u(f)=v(g).

— On the other hand, Theorem 2 allows us to find an 1solated singularity
f which is Kouchnirenko non-degenerate and I'g( /) =I"o(f). Defining

g similarly as above, we get v(f)=v(f)=u(f)=v(g)=rv(g).
—  Summing up, u(f)=v(f).



Mondal's result for map-germs

P. Mondal also gives a criterion for a map-germ to have its intersection
multiplicity at O computable using a combinatorial quantity.

Theorem 5 (Mondal)

Letf=(fi,...,[n):(C",0) = (C",0). Assume that (I'(f1),...,LTn(fn))< 0.
The f.s.a.e.:

1. (fi,..., fn) is Mondal non-degenerate,
2. (f1, -5 Ja)o=T1(f1), .- . Tul(f))or

— Here, (I'1(f1), ..., [u(f2))o is a notation for the ,,generic” (=minimal)
value of the intersection multiplicity for map-germs with the same n-
tuple of Newton diagrams as f's one.

— Moreover, Mondal gives (a rather complicated) combinatorial formula

for (It (f1), -+ Tu(fa) )o-



The prototype of Mondal's result for map-germs

It turns out that under the condition that all f; are convenient, one part of Mondal's

theorem has already been proved (see the book of Aizenberg& Yuzhakov, Thms.
22.9, 22.10):

Letf=(f1,..., [,):(C",0)— (C",0). If all the f; are convenient, then:

L (fl’ ---’fn)O> (Fl(fl)’ -“’Fn(fn))o’

2.if (fi,..., fn) is Bernstein non-degenerate at 0, then

(fis s f)o=(L1(f1)s -+, Tulfn) )g < 0.

Moreover, the above non-degeneracy is ,,generic” in an appropriate sense.

Remark

Actually, the statement of the above theorem given by Aizenberg and Yuzhakov
1s incorrect, because it doesn't guarantee that the f; are convenient and the proof
requires this (P. Mondal, personal communication to Prof. Krasinski).
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Example (Mondal, personal communication to Prof. Krasinski)
— Consider f:=x+y+z, g:=x+y+2z+x* h:==z-(x+2y+32).

— It is easy to see that the system is Bernstein non-degenerate at 0.

— However, if you restrict the system to the (x, y)-plane you get {x + y =
x+ y+x*=0} and this system is Bernstein degenerate at O with respect to
the vector v:=(1,1). Hence, (f,g, /) is Mondal degenerate.

— Correspondingly, (f,g,h),=3but (I'o(f),To(g),[o(h)),=2.

— Any ,,convenientation” of the system, e.g. f:=f, g:=g, h:=h+ax*+by/,
[> k>4, leads to a system which is always Bernstein degenerate at 0, as can
be seen by considering the vector v:=(1,1,k—1): in,h=z- (x+2y) +ax".

— Hence, an analogue of Lemma 1 is not valid in general and one cannot repeat
the reasoning from the proof of Theorem 4 in the case of arbitrary systems.






